【總結(jié)】二次函數(shù)面積最大問題姓名:1、如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個(gè)交點(diǎn)為B(5,0),另一個(gè)交點(diǎn)為A,且與y軸交于點(diǎn)C(0,5).(1)求直線BC與拋物線的解析式;(2)若點(diǎn)M是拋物線在x軸下方圖象上的一動(dòng)點(diǎn),過點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求MN的最大值;(3)求三角形CBM的最大值2、如圖,對(duì)稱軸
2025-03-24 06:28
【總結(jié)】二次函數(shù)---面積問題的研究講師:段老師首先仔細(xì)觀察下列常見圖形,說出如何求出各圖中陰影部分圖形的面積.在以上問題的分析中研究思路為:(1)分析圖形的成因(2)識(shí)別圖形的形狀(3)找出圖形的計(jì)算方法?間接求面積法?直線切割法?函數(shù)綜合法注意:(1)取三角形的底邊時(shí)一般以坐標(biāo)軸上線段或以與軸平行的線段為底邊.(2)三邊均不在
【總結(jié)】《二次函數(shù)在閉區(qū)間上的最值問題》教學(xué)設(shè)計(jì)潼關(guān)中學(xué)郭傳濤1.教材分析二次函數(shù)是高中數(shù)學(xué)的重要內(nèi)容,是在學(xué)習(xí)了《函數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對(duì)二次函數(shù)的概念等知識(shí)進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習(xí)其它函數(shù),尤其是利用函數(shù)的圖像來研究函數(shù)的性質(zhì)打下堅(jiān)實(shí)的基礎(chǔ),而含參數(shù)的二次函數(shù)是進(jìn)入高中以后學(xué)生遇到的新的問題,雖然在初中學(xué)生接觸過二次函數(shù),但是初中的要求比
2025-03-24 06:25
【總結(jié)】二次函數(shù)在給定區(qū)間上的最值問題【學(xué)前思考】二次函數(shù)在閉區(qū)間上取得最值時(shí)的,只能是其圖像的頂點(diǎn)的橫坐標(biāo)或給定區(qū)間的端點(diǎn).因此,影響二次函數(shù)在閉區(qū)間上的最值主要有三個(gè)因素:拋物線的開口方向、對(duì)稱軸以及給定區(qū)間的位置.在這三大因素中,最容易確定的是拋物線的開口方向(與二次項(xiàng)系數(shù)的正負(fù)有關(guān)),而關(guān)于對(duì)稱軸與給定區(qū)間的位置關(guān)系的討論是解決二次函數(shù)在給定區(qū)間上的最值問題的關(guān)鍵.
2025-04-04 04:24
【總結(jié)】二次函數(shù)在閉區(qū)間上的最值一、知識(shí)要點(diǎn):一元二次函數(shù)的區(qū)間最值問題,核心是函數(shù)對(duì)稱軸與給定區(qū)間的相對(duì)位置關(guān)系的討論。一般分為:對(duì)稱軸在區(qū)間的左邊,中間,右邊三種情況.設(shè),求在上的最大值與最小值。分析:將配方,得頂點(diǎn)為、對(duì)稱軸為當(dāng)時(shí),它的圖象是開口向上的拋物線,數(shù)形結(jié)合可得在[m,n]上的最值:(1)當(dāng)時(shí),的最小值是的最大值是中的較大者。(2)當(dāng)時(shí)若,由在上是增函
2025-06-18 20:13
【總結(jié)】 優(yōu)能中學(xué)教育學(xué)習(xí)中心U-CANLearningcentreofmiddlesch
2025-05-31 22:43
【總結(jié)】二次函數(shù)最值應(yīng)用題1:(導(dǎo)數(shù))統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)耗油量y(升)關(guān)于行駛速度x(千米/小時(shí))的函數(shù)解析式可以表示為:,已知甲、乙兩地相距100千米.(1)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?(2)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油量最少?最少為多少升?2:(條件最值)如圖所示,校園內(nèi)計(jì)劃修建一
2025-03-24 06:26
2025-05-16 02:58
【總結(jié)】有限區(qū)間上含參數(shù)的二次函數(shù)的最值問題執(zhí)教:吳雄華時(shí)間:2020-9班級(jí):高三(1)班教學(xué)目標(biāo):知識(shí)與技能:1.掌握定義在變化區(qū)間上的一元二次函數(shù)最值的求解方法;2.掌握系數(shù)含參數(shù)的一元二次函數(shù)在定區(qū)間上最值的求解方法;過程與方法:3.加深學(xué)生運(yùn)
2025-10-25 00:07
【總結(jié)】二次函數(shù)零點(diǎn)問題【探究拓展】探究1:設(shè)分別是實(shí)系數(shù)一元二次方程和的一個(gè)根,且求證:方程有且僅有一根介于之間.變式1:已知函數(shù)f(x)=ax2+4x+b(a0,a、b∈R),設(shè)關(guān)于x的方程f(x)=0的兩實(shí)根為x1、x2,方程f(x)=x的兩實(shí)根為α、β.(1)若|α-β|=1,求a、b的關(guān)系式;(2)若a、b均為負(fù)整數(shù)
【總結(jié)】二次函數(shù)在閉區(qū)間上的最值石家莊市42中學(xué)于祝高中數(shù)學(xué)例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;10xy–23例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求
2025-10-08 04:08
【總結(jié)】第1章二次函數(shù)1.4二次函數(shù)的應(yīng)用第1課時(shí)利用二次函數(shù)解決面積最值問題筑方法勤反思第1章二次函數(shù)學(xué)知識(shí)學(xué)知識(shí)二次函數(shù)的應(yīng)用知識(shí)點(diǎn)一求二次函數(shù)的最大值或最小值二次函數(shù)y=ax2+bx+c(a≠0),當(dāng)x=________時(shí),函數(shù)有最值,最值為______
2025-06-16 23:28
【總結(jié)】成都市中考?jí)狠S題(二次函數(shù))精選【例一】.如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點(diǎn),并與直線y=kx交于A、B兩點(diǎn),直線l過點(diǎn)E(0,﹣2)且平行于x軸,過A、B兩點(diǎn)分別作直線l的垂線,垂足分別為點(diǎn)M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當(dāng)k=0時(shí),直線y=kx與x軸重合,求出此時(shí)的值;②試說明無論k取何值,
2025-03-24 06:27
【總結(jié)】1《探究二次函數(shù)在閉區(qū)間上的最值》教案教學(xué)目標(biāo):初步掌握解決二次函數(shù)在閉區(qū)間上最值問題的一般解法,總結(jié)歸納出二次函數(shù)在閉區(qū)間上最值的一般規(guī)律,會(huì)運(yùn)用二次函數(shù)在閉區(qū)間上的圖像研究相關(guān)問題。:通過實(shí)驗(yàn),觀察影響二次函數(shù)在閉區(qū)間上的最值的因素,在此基礎(chǔ)上討論探究出解決二次函數(shù)在閉區(qū)間上最值問題的一般解法和規(guī)律。、態(tài)度與價(jià)值觀:
2024-11-21 23:43
【總結(jié)】拆分函數(shù)解析式結(jié)構(gòu),巧解問題--------------函數(shù)值域(最值)問題的解法在高中,初學(xué)函數(shù)之時(shí),我們接觸的具體函數(shù)并不多。前面我們已經(jīng)給出了一元二次函數(shù)值域(最值)的求法步驟。除此,還有一類函數(shù)也很常見,它也是今后解決其他復(fù)雜函數(shù)值域(最值)問題的基礎(chǔ)。此類函數(shù)看似生疏,而實(shí)際這類函數(shù)的圖像,就是我們初中學(xué)過的反比例函數(shù)圖像。此類問題有三種類型,一種是函數(shù)式子決定定義域,
2025-03-24 05:36