【總結(jié)】二次函數(shù)在閉區(qū)間上的最值一、知識要點(diǎn):一元二次函數(shù)的區(qū)間最值問題,核心是函數(shù)對稱軸與給定區(qū)間的相對位置關(guān)系的討論。一般分為:對稱軸在區(qū)間的左邊,中間,右邊三種情況.設(shè),求在上的最大值與最小值。分析:將配方,得頂點(diǎn)為、對稱軸為當(dāng)時(shí),它的圖象是開口向上的拋物線,數(shù)形結(jié)合可得在[m,n]上的最值:(1)當(dāng)時(shí),的最小值是的最大值是中的較大者。(2)當(dāng)時(shí)若,由在上是增函
2025-05-16 02:58
【總結(jié)】周村區(qū)城北中學(xué)二次函數(shù)綜合提升寒假作業(yè)題一、頂點(diǎn)、平移1、拋物線y=-(x+2)2-3的頂點(diǎn)坐標(biāo)是().(A)(2,-3);(B)(-2,3);(C)(2,3);(D)(-2,-3)2、若為二次函數(shù)的圖象上的三點(diǎn),則的大小關(guān)系是A.B.C.D.3、二次函數(shù)y=﹣(x﹣1)2+5,當(dāng)m≤x≤n且mn<
2025-03-24 06:26
【總結(jié)】...... 二次函數(shù)中的最值問題重難點(diǎn)復(fù)習(xí)一般地,如果是常數(shù),,那么叫做的二次函數(shù).二次函數(shù)用配方法可化成:的形式的形式,得到頂點(diǎn)為(,),對稱軸是.,∴頂點(diǎn)是,對稱軸是直線.二次函數(shù)常用來解決最值
2025-03-24 12:30
【總結(jié)】二次函數(shù)訓(xùn)練提高習(xí)題1.,劉星同學(xué)觀察得出了下面四條信息:(1)>0;(2)c>1;(3)2a-b<0;(4)a+b+c<()A.2個(gè)B.3個(gè)C.4個(gè)D.1個(gè)2.在同一坐標(biāo)系中,一次函數(shù)與二次函數(shù)的圖像可能是()3..拋物線y=-(x+2)2-3的頂點(diǎn)坐標(biāo)是().(A)
2025-06-27 16:35
【總結(jié)】九年級數(shù)學(xué)下冊二次函數(shù)的應(yīng)用教案二湘教版一、教學(xué)目標(biāo):1、體驗(yàn)從實(shí)際問題中抽象出函數(shù)關(guān)系式的過程,進(jìn)一步感受數(shù)學(xué)模型思想和數(shù)學(xué)應(yīng)用價(jià)值。2、能夠運(yùn)用二次函數(shù)的性質(zhì)和圖象解決實(shí)際問題。二、教學(xué)重點(diǎn)、難點(diǎn):用二次函數(shù)的性質(zhì)和圖象解決實(shí)際問題。三、教學(xué)過程:1、情境創(chuàng)設(shè):某噴灌設(shè)備的噴頭B高出地面,如果噴出的拋物線形水流的
2024-11-20 02:08
【總結(jié)】二次函數(shù)在閉區(qū)間上的最值石家莊市42中學(xué)于祝高中數(shù)學(xué)例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;10xy–23例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求
2024-10-17 04:08
【總結(jié)】二次函數(shù)的最值問題舉例(附練習(xí)、答案)二次函數(shù)是初中函數(shù)的主要內(nèi)容,也是高中學(xué)習(xí)的重要基礎(chǔ).在初中階段大家已經(jīng)知道:二次函數(shù)在自變量取任意實(shí)數(shù)時(shí)的最值情況(當(dāng)時(shí),函數(shù)在處取得最小值,無最大值;當(dāng)時(shí),函數(shù)在處取得最大值,無最小值.本節(jié)我們將在這個(gè)基礎(chǔ)上繼續(xù)學(xué)習(xí)當(dāng)自變量在某個(gè)范圍內(nèi)取值時(shí),函數(shù)的最值問題.同時(shí)還將學(xué)習(xí)二次函數(shù)的最值問題在實(shí)際生活中的簡單應(yīng)用.【例1】當(dāng)時(shí),求函數(shù)的最大值和
2025-06-23 21:18
【總結(jié)】1《探究二次函數(shù)在閉區(qū)間上的最值》教案教學(xué)目標(biāo):初步掌握解決二次函數(shù)在閉區(qū)間上最值問題的一般解法,總結(jié)歸納出二次函數(shù)在閉區(qū)間上最值的一般規(guī)律,會運(yùn)用二次函數(shù)在閉區(qū)間上的圖像研究相關(guān)問題。:通過實(shí)驗(yàn),觀察影響二次函數(shù)在閉區(qū)間上的最值的因素,在此基礎(chǔ)上討論探究出解決二次函數(shù)在閉區(qū)間上最值問題的一般解法和規(guī)律。、態(tài)度與價(jià)值觀:
2024-11-21 23:43
【總結(jié)】二次函數(shù)在給定區(qū)間上的最值問題【學(xué)前思考】二次函數(shù)在閉區(qū)間上取得最值時(shí)的,只能是其圖像的頂點(diǎn)的橫坐標(biāo)或給定區(qū)間的端點(diǎn).因此,影響二次函數(shù)在閉區(qū)間上的最值主要有三個(gè)因素:拋物線的開口方向、對稱軸以及給定區(qū)間的位置.在這三大因素中,最容易確定的是拋物線的開口方向(與二次項(xiàng)系數(shù)的正負(fù)有關(guān)),而關(guān)于對稱軸與給定區(qū)間的位置關(guān)系的討論是解決二次函數(shù)在給定區(qū)間上的最值問題的關(guān)鍵.
2025-03-24 06:25
【總結(jié)】閉區(qū)間上二次函數(shù)的最值問題一、?教材分析1、教學(xué)背景二次函數(shù)是重要的初等函數(shù)之一,很多問題都要化歸為二次函數(shù)來處理。二次函數(shù)又與一元二次方程、一元二次不等式有著密切的聯(lián)系,因此必須熟練掌握它的性質(zhì),并能靈活地運(yùn)用它的性質(zhì)去解決實(shí)際問題。二次函數(shù)在高考中占有重要的地位,而二次函數(shù)在閉區(qū)間上的最值在各個(gè)方面都有重要的應(yīng)用,主要考察我們分類討論和數(shù)形結(jié)合思想。這節(jié)課我們主要學(xué)會應(yīng)
2025-05-02 23:56
【總結(jié)】二次函數(shù)運(yùn)用題一:知識點(diǎn)利潤問題:總利潤=總售價(jià)–總成本總利潤=每件商品的利潤×銷售數(shù)量二:例題講解1、(2009年內(nèi)蒙古包頭)將一條長為20cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長各做成一個(gè)正方形,則這兩個(gè)正方形面積之和的最小值是cm2.2、(2010年聊城冠縣實(shí)驗(yàn)中學(xué)二模)某商品原價(jià)289元,經(jīng)連續(xù)兩次降價(jià)
2025-03-25 07:11
【總結(jié)】二次函數(shù)的最值問題練習(xí):已知函數(shù)y=x2+2x+2,xD,求此函數(shù)在下列各D中的最值:①[-3,-2];②[-2,1];③[0,1];④[-3,]顯示文本對象顯示點(diǎn)隱藏函數(shù)圖像顯示對象顯示文本對象顯示對象顯示點(diǎn)練習(xí):已知函數(shù)y=x2+2x+2,xD,求此
2024-11-12 01:26
【總結(jié)】2020年9月15日給定二次函數(shù):y=2x2-8x+1,我們怎么求它的最值。Oxy2-7解:y=2(x-2)2-7,由圖象知,當(dāng)x=2時(shí),y有最小值,ymin=f(2)=-7,沒有最大值。小結(jié)、二次函數(shù)y=ax2+bx+c(a≠0)中,y取得最小值當(dāng)自變量x=
2024-11-11 21:11
【總結(jié)】班級姓名2018屆初三數(shù)學(xué)培優(yōu)材料(一)函數(shù)實(shí)際應(yīng)用專題(一)例題1小華的爸爸在國際商貿(mào)城開專賣店專銷某種品牌的計(jì)算器,進(jìn)價(jià)12元∕只,售價(jià)20元∕只.為了促銷,專賣店決定凡是買10只以上的,每多買一只,,但是最低價(jià)為16元∕只.(1)顧客一次至少買多少只,才能以最低價(jià)購買?(2)寫出當(dāng)一次購買x只時(shí)(x>10),利潤y
2025-06-23 13:54
【總結(jié)】【做一做】請你畫一個(gè)周長為10厘米的矩形,算算它的面積是多少?再和你的同伴比一比,發(fā)現(xiàn)了什么?同學(xué)長寬面積同學(xué)3同學(xué)23厘米2厘米6平方厘米4厘米1厘米4平方厘米同學(xué)1…………長和寬設(shè)置多少時(shí)矩形面積可以取到最大呢?解:設(shè)長為
2025-05-12 13:52