【總結(jié)】例1,7名學(xué)生站成一排,甲已必須站在一起,有多少種方法?捆綁法:要求某幾個(gè)元素必須排在一起的問(wèn)題,可以用捆綁法來(lái)解決問(wèn)題。即將需要相鄰的元素合并為一個(gè)元素,再與其他元素一起作排列,同時(shí)要注意合并元素內(nèi)部也可以做排列。一般地:n個(gè)人站成一排,其中某m個(gè)人相鄰,可用“捆綁法”解決,共有種排法插入法:對(duì)
2025-10-31 13:22
【總結(jié)】排列組合問(wèn)題經(jīng)典題型與通用方法:題目中規(guī)定相鄰的幾個(gè)元素捆綁成一個(gè)組,當(dāng)作一個(gè)大元素參與排列.,如果必須相鄰且在的右邊,則不同的排法有()A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問(wèn)題,可先把無(wú)位置要求的幾個(gè)元素全排列,再把規(guī)定的相離的幾個(gè)元素插入上述幾個(gè)元
2025-06-25 22:57
【總結(jié)】排列組合常見(jiàn)題型及解題策略一.可重復(fù)的排列求冪法:重復(fù)排列問(wèn)題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過(guò)“住店法”可順利解題,在這類問(wèn)題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個(gè)底數(shù),哪個(gè)是指數(shù)【例1】(1)有4名學(xué)生報(bào)名參加數(shù)學(xué)、物理、化學(xué)競(jìng)賽,每人限報(bào)一科,有多少種不同的報(bào)名方法?(2)有4名學(xué)生參加爭(zhēng)奪數(shù)學(xué)、
2025-08-04 18:28
【總結(jié)】排列組合復(fù)習(xí)課教學(xué)設(shè)計(jì)------龍巖二中郭小峰排列組合復(fù)習(xí)課一.教學(xué)內(nèi)容分析:、組合都是研究事物在某種給定的模式下所有可能的配置的數(shù)目問(wèn)題,它們之間的主要區(qū)別在于是否要考慮選出元素的先后順序,不需要考慮順序的是組合問(wèn)題,需要考慮順序的是排列問(wèn)題,排列是在組合的基礎(chǔ)上對(duì)入選的元素進(jìn)行排隊(duì),因此,分析解決排列組合問(wèn)題的基本思維是“先組,后排”.,要注意四點(diǎn):(1)
2025-05-01 04:21
【總結(jié)】一,映射與排列組合問(wèn)題變式:同(2)257對(duì)集合A中元素進(jìn)行分類。二,排列組合中的映射思維通過(guò)集合A與另一個(gè)集合B之間的映射關(guān)系,將對(duì)集合A中元素的計(jì)數(shù)問(wèn)題轉(zhuǎn)化為對(duì)集合B的計(jì)數(shù)。且A與B是一一對(duì)應(yīng)關(guān)系。三,構(gòu)造法解排列組合題例6,有若干名棋手參加的單循環(huán)制象棋比賽,其中有2名棋手各比賽
2025-11-01 03:08
【總結(jié)】例“歡樂(lè)今宵”節(jié)目中,拿出兩個(gè)信箱.其中存放著先后兩次競(jìng)猜中成績(jī)優(yōu)秀的觀眾來(lái)信.甲信箱中有30封,乙信箱中有20封.現(xiàn)由主持人抽獎(jiǎng)確定幸運(yùn)觀眾,若先確定一名“幸運(yùn)之星”,然后再?gòu)膬尚畔渲懈鞔_定一名幸運(yùn)伙伴,有多少種不同的結(jié)果?練習(xí).如圖,一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一種
2025-10-31 06:20
【總結(jié)】排列組合復(fù)習(xí)學(xué)案1重復(fù)排列“求冪運(yùn)算”重復(fù)排列問(wèn)題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù)。把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過(guò)“住店法”可順利解題。例18名同學(xué)爭(zhēng)奪3項(xiàng)冠軍,獲得冠軍的可能性有()2.特殊元素(位置)用優(yōu)先法:把有限制條件的元素(位置)稱為特殊元素(位置),可優(yōu)先將它(們)安排好,后再安排其它元素。
2025-04-17 01:31
【總結(jié)】12除做到:排列組合分清,加乘原理辯明,避免重復(fù)遺漏外,還應(yīng)注意積累排列組合問(wèn)題得以快速準(zhǔn)確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個(gè)數(shù)字組成無(wú)重復(fù)的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(gè)(1)數(shù)字1不排在個(gè)位和千位(2)數(shù)字1不在個(gè)位,數(shù)字6不在千位。分析:(1)個(gè)位和千位有5個(gè)數(shù)字可供選擇,其余2位有四個(gè)可供選擇,由乘法原理:=240
2025-03-25 02:36
【總結(jié)】排列組合排列定義???從n個(gè)不同的元素中,取r個(gè)不重復(fù)的元素,按次序排列,稱為從n個(gè)中取r個(gè)的無(wú)重排列。排列的全體組成的集合用P(n,r)表示。排列的個(gè)數(shù)用P(n,r)表示。當(dāng)r=n時(shí)稱為全排列。一般不說(shuō)可重即無(wú)重??芍嘏帕械南鄳?yīng)記號(hào)為P(n,r),P(n,r)。組合定義從n個(gè)不同元素中取r個(gè)不重復(fù)的元素組成一個(gè)子集,而不考慮其元素的順序,稱
2025-06-25 23:09
【總結(jié)】完美WORD格式專題三:排列、組合及二項(xiàng)式定理一、排列、組合與二項(xiàng)式定理【基礎(chǔ)知識(shí)】(加法原理).(乘法原理).==.(n,m∈N*,且m≤n).===(n,m∈N*,且m≤n).:(1)=;(2)+=(3).:.:
2025-06-25 22:56
【總結(jié)】主題課題:兩個(gè)原理和排列知識(shí)內(nèi)容:1、分類計(jì)數(shù)原理和分步計(jì)數(shù)原理2、排列、排列數(shù)概念3、排列數(shù)的計(jì)算公式4.排列應(yīng)用題能力目標(biāo):1、通過(guò)兩個(gè)原理的學(xué)習(xí),培養(yǎng)學(xué)生的解決實(shí)際問(wèn)題的能力;2、通過(guò)排列的學(xué)習(xí),可以遷移知識(shí),更好的運(yùn)用兩個(gè)原理,并能解決稍復(fù)雜的數(shù)學(xué)問(wèn)題。3、培養(yǎng)學(xué)生的分析問(wèn)題能力、解決問(wèn)題的能力。數(shù)學(xué)思想:轉(zhuǎn)化思想
【總結(jié)】1.從1,3,5中選2個(gè)不同數(shù)字,從2,4,6,8中選3個(gè)不同數(shù)字排成一個(gè)五位數(shù),則這些五位數(shù)中偶數(shù)的個(gè)數(shù)為()A.5040B.1440C.864D.7202.五個(gè)同學(xué)排成一排照相,其中甲、乙兩人不排兩端,則不同的排法種數(shù)為()A.33B.36C.40D.483.某校從8名教師中選派4名同時(shí)去4個(gè)邊遠(yuǎn)地區(qū)支教(每地1
2025-08-05 18:10
【總結(jié)】排列組合的綜合應(yīng)用例1將4個(gè)不同的小球放入4個(gè)不同的盒子里,求在下列條件下各有多少種不同的放法.(1)恰有一個(gè)盒子里放2個(gè)球;(2)恰有兩個(gè)盒子是空盒.()23441144NCA==3222444412842NCACA=+=()典例講評(píng)例
2025-10-31 08:09
【總結(jié)】排列組合測(cè)試卷1.7個(gè)人站一隊(duì),其中甲在排頭,乙不在排尾,則不同的排列方法有()A.720 B.600 C.576 D.3242.某學(xué)校推薦甲、乙、丙、丁4名同學(xué)參加A、B、C三所大學(xué)的自主招生考試。每名同學(xué)只推薦一所大學(xué),()3.6個(gè)人分乘兩輛不
2025-08-05 07:38
【總結(jié)】第一篇:排列組合典型例題 典型例題一 例1用0到9這10個(gè)數(shù)字.可組成多少個(gè)沒(méi)有重復(fù)數(shù)字的四位偶數(shù)? 分析:這一問(wèn)題的限制條件是:①?zèng)]有重復(fù)數(shù)字;②數(shù)字“0”不能排在千位數(shù)上;③個(gè)位數(shù)字只能是0...
2025-10-12 11:00