【總結(jié)】全等三角形輔助線系列之一與角平分線有關(guān)的輔助線作法大全一、角平分線類輔助線作法角平分線具有兩條性質(zhì):a、對稱性;b、角平分線上的點(diǎn)到角兩邊的距離相等.對于有角平分線的輔助線的作法,一般有以下四種.1、角分線上點(diǎn)向角兩邊作垂線構(gòu)全等:過角平分線上一點(diǎn)向角兩邊作垂線,利用角平分線上的點(diǎn)到兩邊距離相等的性質(zhì)來證明問題;2、截取構(gòu)全等利用對稱性,在角的兩邊截取相等的線段,
2025-07-24 05:40
【總結(jié)】第1頁共2頁初中數(shù)學(xué)三角形全等之截長補(bǔ)短綜合測評卷一、單選題(共4道,每道25分),在直角梯形ABCD中,∠D=∠C=90°,AD∥BC,∠DAB的平分線交CD于E,且BE恰好平分∠ABC,則下列結(jié)論中錯(cuò)誤的是()⊥BE=DE+DE=BE=AD
2025-08-11 21:32
【總結(jié)】專業(yè)資料分享相似三角形中的輔助線在添加輔助線時(shí),所添加的輔助線往往能夠構(gòu)造出一組或多組相似三角形,或得到成比例的線段或得出等角,等邊,從而為證明三角形相似或進(jìn)行相關(guān)的計(jì)算找到等量關(guān)系。主要的輔助線有以下幾種:一、作平行線例1.如圖,的AB邊和AC邊上各取一點(diǎn)D和E,且使AD=
2025-05-16 12:02
【總結(jié)】全等三角形中做輔助線技巧要點(diǎn)大匯總口訣:三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線段和差及倍半,延長縮短可試驗(yàn)。線段和差不等式,移到同一三角去。三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長中線等中線。1、由角平分線想到的輔
2025-06-25 04:37
【總結(jié)】全等三角形問題中常見的輔助線——倍長中線法△ABC中,AD是BC邊中線方式1:直接倍長,(圖1):延長AD到E,使DE=AD,連接BE方式2:間接倍長1)(圖2)作CF⊥AD于F,作BE⊥AD的延長線于E,連接BE2)(圖3)延長MD到N,使DN=MD,連接CD【經(jīng)典例題】例1已知,如圖△ABC中,AB=5,AC=3,則中線
2025-03-24 07:41
【總結(jié)】一、手拉手模型要點(diǎn)一:手拉手模型特點(diǎn):由兩個(gè)等頂角的等腰三角形所組成,并且頂角的頂點(diǎn)為公共頂點(diǎn)結(jié)論:(1)△ABD≌△AEC(2)∠α+∠BOC=180°(3)OA平分∠BOC變形:,連結(jié)與,證明(1)(2)(3)與之間的夾角為(4)(5)(6)平分(7)
2025-06-25 02:44
【總結(jié)】全等三角形問題中常見的輔助線的作法20常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對
【總結(jié)】....全等三角形輔助線常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分
【總結(jié)】相似三角形中幾種常見的輔助線作法在添加輔助線時(shí),所添加的輔助線往往能夠構(gòu)造出一組或多組相似三角形,或得到成比例的線段或出等角,等邊,從而為證明三角形相似或進(jìn)行相關(guān)的計(jì)算找到等量關(guān)系。主要的輔助線有以下幾種:一、添加平行線構(gòu)造“A”“X”型例1:如圖,D是△ABC的BC邊上的點(diǎn),BD:DC=2:1,E是AD的中點(diǎn),求:BE:EF的值.解法一:過點(diǎn)D作CA的平行線交BF于點(diǎn)
2025-06-25 03:22
【總結(jié)】全等三角形問題中常見的輔助線的作法總論:全等三角形問題最主要的是構(gòu)造全等三角形,構(gòu)造兩條邊之間的相等,構(gòu)造兩個(gè)角之間的相等“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題:倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形3.遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點(diǎn)常常是角平分線
2025-03-22 14:02
【總結(jié)】等腰三角形常用輔助線專題練習(xí)(含答案):已知,點(diǎn)D、E在三角形ABC的邊BC上,AB=AC,AD=AE,求證:BD=CE。證明:作AF⊥BC,垂足為F,則AF⊥DE?!逜B=AC,AD=AE又∵AF⊥BC,AF⊥DE,∴BF=CF,DF=EF(等腰三角形底邊上的高與底邊上的中線互相重合)。∴BD=CE.,在三角形ABC中,AB=AC,AF平行B
2025-06-25 05:16
【總結(jié)】第1頁共3頁八年級數(shù)學(xué)巧用輔助線證三角形全等專題練習(xí)試卷簡介:通過典型例題給學(xué)生介紹兩種三角形全等中常用輔助線的做法:備長中線法和截長補(bǔ)短法。通過本例題,使學(xué)生能夠掌握這兩種解題方法。學(xué)習(xí)建議:全等三角形是歷年中考數(shù)學(xué)必考內(nèi)容,這類問題題型比較多樣,很多問題都會考查輔助線的做法,這些例題就是根據(jù)同學(xué)們學(xué)習(xí)中的常見問題
2025-08-11 21:57
【總結(jié)】全等三角形問題中常見的輔助線的作法常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”
2025-03-26 04:26
【總結(jié)】全等三角形專題講解專題一全等三角形判別方法的應(yīng)用專題概說:判定兩個(gè)三角形全等的方法一般有以下4種:1.三邊對應(yīng)相等的兩個(gè)三角形全等(簡寫成“SSS”)2.兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等(簡寫成“SAS”)3.兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等(簡寫成“ASA”)4.兩個(gè)角和其中一個(gè)角的對邊對應(yīng)相等的兩個(gè)三角形全等(簡寫成“AAS”)而在判別
2025-06-07 15:37
【總結(jié)】全等三角形總結(jié)A.考點(diǎn)精析、重點(diǎn)突破、學(xué)法點(diǎn)撥“全等四解”全等三角形是初中平面幾何的重要內(nèi)容,它為解決線段以及角的相等問題提供了重要工具,也為以后的學(xué)習(xí)奠定了必要的基礎(chǔ),因此要學(xué)好平面幾何,必須重視全等三角形的學(xué)習(xí).那么怎樣才能學(xué)好它呢?本文談四點(diǎn)意見,供同學(xué)們學(xué)習(xí)時(shí)參考.組成全等三角形的基本圖形大致有以下幾種:①平移型,如圖中的兩種圖形屬于平移型,它們可看
2025-04-16 23:02