【總結(jié)】三角形知識點:關(guān)于三角形的一些概念由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。組成三角形的線段叫三角形的邊;相鄰兩邊的公共端點叫三角形的頂點;相鄰兩邊所組成的角叫三角形的內(nèi)角,簡稱三角形的角。它有三條邊、三個內(nèi)角和三個頂點,三角形可用符號“△”表示.三角形的表示方法通常用三個大寫字母表示三角形的頂點,如
2025-01-08 20:45
【總結(jié)】全等三角形輔助線系列之一與角平分線有關(guān)的輔助線作法大全一、角平分線類輔助線作法角平分線具有兩條性質(zhì):a、對稱性;b、角平分線上的點到角兩邊的距離相等.對于有角平分線的輔助線的作法,一般有以下四種.1、角分線上點向角兩邊作垂線構(gòu)全等:過角平分線上一點向角兩邊作垂線,利用角平分線上的點到兩邊距離相等的性質(zhì)來證明問題;2、截取構(gòu)全等利用對稱性,在角的兩邊截取相等的線段,
2025-07-24 05:40
【總結(jié)】第1頁共3頁七年級三角形的線與角專題三角形的中線一、單選題(共5道,每道20分)15和12兩部分,則此三角形底邊之長為()或11答案:C解題思路:如圖,設(shè)AD=DC=x,則AB=2x,當(dāng)AB+AD=3x=15時,x=5,CD+BC=12,則BC=7;當(dāng)
2025-08-10 14:21
【總結(jié)】一、判斷題:1、兩條直角邊對應(yīng)相等的兩個直角三角形全等()2、有兩條邊對應(yīng)相等的兩個直角三角形全等()3、有一個角與一條邊對應(yīng)相等的兩個三角形全等()4、只有一條高在三角形內(nèi)部的三角形是直角三角形(
2024-11-30 02:42
【總結(jié)】全等三角形輔助線系列之三與截長補(bǔ)短有關(guān)的輔助線作法大全一、截長補(bǔ)短法構(gòu)造全等三角形截長補(bǔ)短法,是初中數(shù)學(xué)幾何題中一種輔助線的添加方法,也是把幾何題化難為易的一種思想.所謂“截長”,就是將三者中最長的那條線段一分為二,使其中的一條線段等于已知的兩條較短線段中的一條,然后證明其中的另一段與已知的另一條線段相等;所謂“補(bǔ)短”,就是將一個已知的較短的線段延長至與另一個已知的較短的長度相等
【總結(jié)】全等三角形問題中常見的輔助線的作法20常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對
2025-03-24 07:41
【總結(jié)】....全等三角形輔助線常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分
【總結(jié)】全等三角形作輔助線經(jīng)典例題常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點
2025-03-24 07:38
【總結(jié)】(1)“取長補(bǔ)短法“證線段的和差關(guān)系1、如圖,AC∥BD,EA,EB分別平分∠CAB,∠DBA,CD過點E,求證;AB=AC+BD_E_C_D_B_A2:如圖,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于點D,CE垂直于BD,交BD的延長線于點E。求證:BD=2CE。
2025-04-04 03:26
【總結(jié)】第1頁共8頁七年級數(shù)學(xué)三角形線與角專題練習(xí)一、單選題(共25道,每道4分)15和12兩部分,則此三角形底邊之長為()或117,一腰上的中線把周長分為兩部分之差為3,則腰長為()或1032.一腰的中線將周長分成5:3,則三角
2025-08-12 20:19
【總結(jié)】第1頁共2頁七年級三角形的線與角專題三角形的角平分線2一、單選題(共4道,每道25分),△ABC中,∠C=72°,∠BAD=∠BAE,∠ABD=∠ABF,則∠D=.°°°°①,PB平分ABC,
【總結(jié)】第1頁共2頁七年級三角形的線與角專題三角形的角平分線1一、單選題(共4道,每道25分),CD平分∠ACB,DE∥AC且∠1=30°,則∠2=()度.①,PB平分ABC,PC平分ACB;如圖②,PB平分ABC,PC平分A
2025-08-12 20:23
【總結(jié)】找一找如圖,ABCEFG已知:ΔABC≌ΔEFG.找出圖中相等的邊和角要畫一個三角形與小明畫的三角形全等,需要幾個與邊或角的大小有關(guān)的條件呢?想一想做一做1.只給一個條件(一條邊或一個角)畫三角形時,大家畫出的三角形一定全等嗎?有一條邊對應(yīng)相等的三角形不
【總結(jié)】《認(rèn)識三角形—三角形的高》導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】1.了解三角形的高的概念、畫法及性質(zhì),并能在具體的三角形中作出它們。2.探究三角形的三條高線交于一點的過程及高線的應(yīng)用?!臼褂谜f明與學(xué)法指導(dǎo)】P89-P90頁,探究三角形的三條高線交于一點的過程及高線的應(yīng)用。針對課前預(yù)習(xí)二次閱讀教材,并回答問題.,隨時記錄在課本或?qū)W(xué)案上,
2024-12-09 12:45
【總結(jié)】全等三角形問題中常見的輔助線——截長補(bǔ)短法例1、如圖,中,AB=2AC,AD平分,且AD=BD,求證:CD⊥AC例2、如圖,AD∥BC,AE,BE分別平分∠DAB,∠CBA,CD過點E,求證;AB=AD+BC例3、如圖,已知在內(nèi),,,P,Q分別在BC,CA上,并且AP,BQ分別是,的角平分線。求證:BQ+AQ=AB+BP