【總結(jié)】全等三角形基礎(chǔ)練習(xí)一.解答題(共24小題)1.如圖,已知AB⊥AC,AB=AC,DE過點A,且CD⊥DE,BE⊥DE,垂足分別為點D,E.求證:△ADC≌△BEA.2.如圖,AB∥ED,已知AC=BE,且點B、C、D三點共線,若∠E=∠ACB.求證:BC=DE.3.如圖,點B,F(xiàn),C,E在直線l上(F,C之間不能直接測量),點A,D在l異側(cè),測得AB=DE,AC=DF,B
2025-08-05 02:49
【總結(jié)】1探索三角形全等的條件練習(xí)題1、已知AD是⊿ABC的中線,BE⊥AD,CF⊥AD,問BE=CF嗎?說明理由。2、已知AC=BD,AE=CF,BE=DF,問AE∥CF嗎?3、已知AB=CD,BE=DF,AE=CF,問AB∥
2024-11-21 21:37
【總結(jié)】構(gòu)造等腰三角形解題的輔助線做法呂海艷等腰三角形是一種特殊的三角形,常與全等三角形的相關(guān)知識結(jié)合在一起考查。在許多幾何問題中,通常需要構(gòu)造等腰三角形才能使問題獲解。那么如何構(gòu)造等腰三角形呢?一般有以下四種方法:(1)依據(jù)平行線構(gòu)造等腰三角形;(2)依據(jù)倍角關(guān)系構(gòu)造等腰三角形;(3)依據(jù)角平分線+垂線構(gòu)造等腰三角形;(4)依據(jù)120°角或60°角,常補形構(gòu)
2025-03-25 04:37
【總結(jié)】相似三角形經(jīng)典練習(xí)題 一.選擇題(共9小題)1.在直角三角形中,兩直角邊分別為3和4,則這個三角形的斜邊與斜邊上的高的比為( ?。〢. B. C. D.2.如圖,在Rt△ABC中,AD為斜邊BC上的高,若S△CAD=3S△ABD,則AB:AC等于( ?。〢.1:3 B.1:4 C.1: D.1:23.如圖,在△ABC中,D,E分別是邊AB,AC的中點,△ADE
2025-03-26 02:59
【總結(jié)】第一篇:全等三角形總結(jié)與復(fù)習(xí)練習(xí)題概要 八年級數(shù)學(xué)全等三角形總結(jié)與復(fù)習(xí)練習(xí)題 【同步教育信息】 : 全等三角形復(fù)習(xí)與小結(jié) : ,會靈活運用本章知識進行計算和證明。 ,培養(yǎng)和提高學(xué)生運用所...
2025-10-16 06:39
【總結(jié)】練習(xí)1一、選擇題,△ABC中,∠C=75°,若沿圖中虛線截去∠C,則∠1+∠2=()A.360°B.180°C.255°D.145°=3,b=5,c為奇數(shù),那么由a,b,c為邊組成的三角形共有()A.1個
2025-08-04 23:45
【總結(jié)】全等三角形單元練習(xí)卷一、知識要點:1、全等形:叫做全等形。2、全等三角形的性質(zhì):。3、全等三角形的判定:一般三角形有:;直
2025-08-05 03:01
【總結(jié)】......全等三角形拔高練習(xí)A:AD平分∠BAC,AC=AB+BD,求證:∠B=2∠CCDB,中,AB=2AC,AD平分,且AD=BD,求證:CD⊥AC,四邊形ABCD中,AB∥DC
2025-03-24 07:39
【總結(jié)】萌育教育全等三角形及其性質(zhì)1.如圖,,且,,,求和的度數(shù).2.如圖所示,在同一直線上,且.求證:.3.長為的兩根繩,恰好可圍成兩個全等三角形,則其中一個三角形的最長邊的取值范圍為( ?。粒? B. C. D.4.如圖,點在一條直線上
2025-03-24 07:40
【總結(jié)】等腰三角形和等邊三角形練習(xí)題1.如圖,等邊△ABC的邊長為3,P為BC上一點,且BP=1,D為AC上一點,若∠APD=60°,則CD的長為()A. B. C. D.ADCPB60°2.如圖,△ABC中,D、E分別是BC、AC的中點,BF平分∠ABC,交DE于點F,若BC=6,則DF的長是
2025-03-25 06:57
【總結(jié)】解三角形練習(xí)題,,,分別為角,,所對邊,若,則此三角形一定是()B.直角三角形C.等腰三角形D.等腰或直角三角形2.在△中,角的對邊邊長分別為,則的值為A.38B.37C.36D.35::xR,+=:,
2025-08-05 17:02
【總結(jié)】全等三角形及其輔助線作法常見輔助線的作法有以下幾種:1)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”(或構(gòu)造平行線的X型全等).2)遇到角平分線,一是可以自角平分線上的某一點向角的兩邊作垂線,二是在角的兩邊上截取相同的線段,構(gòu)成全等。利用的思維模式是三角形全等變換中的“對折”,也是運用了角的對稱性。3)截長法與
2025-06-23 21:59
【總結(jié)】數(shù)學(xué)·八年級·上冊第十三章全等三角形湛江第一中學(xué)金沙灣學(xué)校林創(chuàng)三角形全等的判定問題:如何才能確定兩個三角形全等呢?提示:可以從以下幾個方面去考慮1、定義2、角3、邊4、邊和角
2024-11-06 18:15
【總結(jié)】三角形全等的條件⑵先任意畫出一個△ABC,再畫一個△A/B/C/,使A/B/=AB,∠A/=∠A,A/C/=AC。把畫好的△A/B/C/剪下,放到△ABC上,它們?nèi)葐??探?已知:任意△ABC,畫一個△A/B/C/,使A/B/=AB,∠A/=∠A,A
2024-11-06 13:41
【總結(jié)】全等三角形的判定(SSS)1、如圖1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,則∠ACD的度數(shù)是()°°°°2、如圖2,線段AD與BC交于點O,且AC=BD,AD=BC,則下面的結(jié)論中不正確的是()A.△ABC≌△BADB.∠