【總結(jié)】一、矩陣的初等變換定義對矩陣進(jìn)行下列三種變換,稱為矩陣的初等變換:(1)交換矩陣的任意兩行;(2)矩陣的任意一行乘以非零數(shù)k;(3)矩陣的任意一行乘以k加到另外一行。、、行階梯形矩陣,特點是可以畫一條階梯線,線的左下方元素全為零;行簡化階梯形矩陣,其非零行的首非零元為1,且非零元所在列的其它元素都為零。二
2025-06-07 16:29
【總結(jié)】第三章向量題型歸納及思路提示
2025-01-06 22:10
【總結(jié)】線代框架之二次型1.定義:二次型1211(,,,)nnTnijijijfxxxxAxaxx??????(其中ijjiaa?,即A為對稱矩陣,12(,,,)Tnxxxx?)。只含平方項的二次型稱為二次型的標(biāo)準(zhǔn)形(此時二次型的矩陣為對角矩陣)12(,,,)TnfxxxxA
【總結(jié)】線性方程組解題方法技巧與題型歸納題型一線性方程組解的基本概念【例題1】如果α1、α2是方程組的兩個不同的解向量,則a的取值如何?解:因為α1、α2是方程組的兩個不同的解向量,故方程組有無窮多解,r(A)=r(Ab)<3,對增廣矩陣進(jìn)行初等行變換:易見僅當(dāng)a=-2時,r(A)=r(Ab)=2<3,故知a=-2?!纠}2】設(shè)A是秩為3的5×4
2025-08-07 11:18
【總結(jié)】第二章矩陣題型歸納及思路提示
【總結(jié)】§矩陣的秩列行和中任取矩陣,在是設(shè)kkAnmA?個元素位于這些行列交叉處的2),,(knkmk??階行列式,組成的中的相對位置不變保持在kA)(.階子式的稱為kA階子式)(矩陣的定義k1階子式是一個數(shù)。注:k一、秩的概念與性質(zhì)的秩,為的子式的最高階數(shù),稱中不為矩陣AA0).(Ar記作.0規(guī)定零
2025-07-25 13:22
【總結(jié)】2022/8/28華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院謝驪玲第3章線性方程組AX=B的數(shù)值解法華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院謝驪玲2022/8/28引言?在自然科學(xué)和工程技術(shù)中很多問題的解決常常歸結(jié)為解線性代數(shù)方程組。例如電學(xué)中的網(wǎng)絡(luò)問題,船體數(shù)學(xué)放樣中建立三次樣條函數(shù)問題,用最小二乘法求實驗數(shù)據(jù)的曲線擬合問題,解非線性方程組問
2025-08-05 11:07
【總結(jié)】常系數(shù)線性方程組基解矩陣的計算董治軍(巢湖學(xué)院數(shù)學(xué)系,安徽巢湖238000)摘要:微分方程組在工程技術(shù)中的應(yīng)用時非常廣泛的,不少問題都?xì)w結(jié)于它的求解問題,基解矩陣的存在和具體尋求是不同的兩回事,一般齊次線性微分方程組的基解矩陣是無法通過積分得到的,但當(dāng)系數(shù)矩陣是常數(shù)矩陣時,可以通過方法求出基解矩陣,這時可利用矩陣指數(shù)t,給出基解矩陣的一般形式,本文針對應(yīng)用最廣泛的常系數(shù)
2025-06-23 07:32
【總結(jié)】試驗3直接法求解線性方程組實驗內(nèi)容?Guass列主元消去法?Doolittle分解?追趕法試驗3解線性方程組的直接法/*DirectMethodforSolvingLinearSystems*/求解bxA???§1高斯消元法/*GaussianElimi
2024-10-19 01:12
【總結(jié)】???????????????????mnmnmmnnnnbxaxaxabxaxaxabxaxaxa???????????????22112222212111212111形如)(個方程的線性方程組的個未知數(shù)稱為mxxxnn?,,21一.線性方程組,aaaaaaaaa
2024-10-16 18:56
【總結(jié)】第2章線性代數(shù)方程組第2章線性代數(shù)方程組11112211211222221122()nnnnnnnnnnxxxxxxxxx???????????????????????????????線性代數(shù)方程組
2024-09-28 16:20
【總結(jié)】幾何與代數(shù)主講:王小六線性代數(shù)的相關(guān)資料:1《IntroductiontoLinearAlgebra》,GilbertStrang著,麻省理工開放課程鏈接:2《Linearalgebraanditsapplications》/線性代數(shù)及其應(yīng)用/[美]DavidC.Lay著3
2025-04-30 05:22
【總結(jié)】//解線性方程組#include#include#include//----------------------------------------------全局變量定義區(qū)constintNumber=15; //方程最大個數(shù)doublea[Number][Number],b[Number],copy
2025-07-26 10:39
2025-08-23 14:09
【總結(jié)】第一節(jié)線性方程組的消元法第二節(jié)矩陣的初等變換第一章線性方程組的消元法和矩陣的初等變換第一節(jié)線性方程組的消元法一、線性方程組的基本概念二、消元法解線性方程組1、線性方程組的初等變換2、利用初等變換解一般線性方程組一、線性方程組的基本概念1.線性方程組的
2025-08-05 10:44