freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式教學(xué)設(shè)計實用8篇(已修改)

2024-11-04 22:29 本頁面
 

【正文】 篇1:《完全平方公式》教學(xué)設(shè)計一、教材分析:(一)教材的地位與作用本節(jié)內(nèi)容主要研究的是完全平方公式的推導(dǎo)和公式在整式乘法中的應(yīng)用。它是在學(xué)生學(xué)習(xí)了代數(shù)式的概念、整式的加減法、冪的運算和整式的乘法后進行學(xué)習(xí)的,其地位和作用主要體現(xiàn)在以下幾方面:(1)整式是初中代數(shù)研究范圍內(nèi)的一塊重要內(nèi)容,整式的運算又是整式中一大主干,乘法公式則是在學(xué)習(xí)了單項式乘法、多項式乘法之后來進行學(xué)習(xí)的;一方面是對多項式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié);另一方面,乘法公式的推導(dǎo)是初中代數(shù)中運用推理方法進行代數(shù)式恒等變形的開端,通過乘法公式的學(xué)習(xí)對簡化某些整式的運算、培養(yǎng)學(xué)生的求簡意識有較大好處。(2)乘法公式是后續(xù)學(xué)習(xí)的必備基礎(chǔ),不僅對學(xué)生提高運算速度、準確率有較大作用,更是以后學(xué)習(xí)因式分解、分式運算的重要基礎(chǔ),同時也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴密的邏輯推理能力的功能。(3)公式的發(fā)現(xiàn)與驗證給學(xué)生體驗規(guī)律發(fā)現(xiàn)的基本方法和基本過程提供了很好模式。(二)教學(xué)目標的確定在素質(zhì)背景下的數(shù)學(xué)教學(xué)應(yīng)以學(xué)生的發(fā)展為本,學(xué)生的能力培養(yǎng)為重,尤其是創(chuàng)新、創(chuàng)造能力,以及培養(yǎng)學(xué)生良好的個性品質(zhì)等。根據(jù)以上指導(dǎo)思想,同時參照義務(wù)教育階段《數(shù)學(xué)課程標準》的要求,確定本節(jié)課的教學(xué)目標如下:知識目標:理解公式的推導(dǎo)過程,了解公式的幾何背景,會應(yīng)用公式進行簡單的計算。能力目標:滲透建模、化歸、換元、數(shù)形結(jié)合等思想方法,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、求簡意識、應(yīng)用意識、解決問題的能力和創(chuàng)新能力。情感目標:培養(yǎng)學(xué)生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思維品質(zhì)。(三)教學(xué)重點與難點完全平方公式和平方差公式一樣是主要的乘法公式,其本質(zhì)是多項式乘法,是學(xué)生今后用于計算的一種重要依據(jù),因此,本節(jié)教學(xué)的重點與難點如下:本節(jié)的重點是體會公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),并會運用公式進行簡單的計算。本節(jié)的難點是從廣泛意義上理解公式中的字母含義,判明要計算的代數(shù)式是哪兩數(shù)的和(差)的平方。二、教學(xué)方法與手段(一)教學(xué)方法:針對初一學(xué)生的形象思維大于抽象思維,注意力不能持久等年齡特點,及本節(jié)課實際,采用自主探索,啟發(fā)引導(dǎo),合作交流展開教學(xué),引導(dǎo)學(xué)生主動地進行觀察、猜測、驗證和交流。同時考慮到學(xué)生的認知方式、思維水平和學(xué)習(xí)能力的差異進行分層次教學(xué),讓不同層次的學(xué)生都能主動參與并都能得到充分的發(fā)展。邊啟發(fā),邊探索邊歸納,突出以學(xué)生為主體的探索性學(xué)習(xí)活動和因材施教原則,教師努力為學(xué)生的探索性學(xué)習(xí)創(chuàng)造知識環(huán)境和氛圍,遵循知識產(chǎn)生過程,從特殊→一般→特殊,將所學(xué)的知識用于實踐中。采用小組討論,大組競賽等多種形式激發(fā)學(xué)習(xí)興趣。(二)教學(xué)手段:利用投影儀輔助教學(xué),突破教學(xué)難點,公式的推導(dǎo)變成生動、形象、直觀,提高教學(xué)效率。(三)學(xué)法指導(dǎo):在學(xué)法上,教師應(yīng)引導(dǎo)學(xué)生積極思維,鼓勵學(xué)生進行合作學(xué)習(xí),讓每個學(xué)生都動口、動手、動腦,自己歸納出運算法則,培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性。三、教材處理根據(jù)本節(jié)內(nèi)容特點,本著循序漸進的原則,我將以“邊長為(a+b)的正方形面積是多少?”這個實際問題引入新課,關(guān)于兩數(shù)和的平方公式通過實例、推導(dǎo)、驗證幾個步驟完成。關(guān)于兩數(shù)差的平方公式,我將為學(xué)生提供三種不同的思路,由學(xué)生自己選擇學(xué)習(xí)、理解,然后再歸納的方法進行,再通過分層次練習(xí),加以鞏固。四、教學(xué)程序一、創(chuàng)設(shè)情境,引出課題如圖,有一個邊長為a米的正方形廣場,則這個廣場的面積是多少?a若在這個廣場的相鄰兩邊鋪一條寬為10米的道路,則面積是多少?a 10引導(dǎo)學(xué)生利用圖形分割求面積。另一方面:正方形10 10a 102 面積為(a+10)2, 所以:(a+10)2=a2+20a+102a a2 10aa 10b ab b2 把10替換為b,(a+b)2=a2+2ab+b2a a2 ab 提出課題a b通過較為簡單的幾何圖形面積計算和較熟悉的整式乖法計算。引入本節(jié)學(xué)習(xí)內(nèi)容(a+b)(a+b)(根據(jù)初一學(xué)生年齡特點,采用圖形變化來激發(fā)學(xué)生學(xué)習(xí)興趣)問題是知識、能力的生長點,通過富有實際意義的問題能激活學(xué)生原有認知,促使學(xué)生主動地進行探索和思考。對公式(a+b)2=a2+2ab+b2的形式進行初步認識,接觸。二、交流對話,探求新知推導(dǎo)兩數(shù)和的完全平方公式計算(a+b)2解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2理解公式特征①算式:兩數(shù)和的平方②積:兩個數(shù)的平方和加上這兩個數(shù)積的2倍語言敘述(a+b)2=a2+2ab+b2用語言如何敘述公式(a—b)2=a2—2ab+b2教學(xué)①利用多項式乘法 (a—b)2=(a—b)(a—b)②利用換元思想 (a—b)2=[a+(—b)]2③利用圖形ba(a—b) ba學(xué)生總結(jié)、歸納:(a+b)2=a2+2ab+b2(a—b)2=a2—2ab+b2這兩個公式叫做完全平方公式,兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和,加上(或減去)這兩數(shù)積的2倍。公式中的字母含義的理解。(學(xué)生回答)(x+2y)2是哪兩個數(shù)的和的`平方?(x+2y)2=( )2+2( )( )+( )2(2x—5y)2是哪兩個數(shù)的差的平方?(2x+5y)2=( )2+2( )( )+( )2變式 (2x—5y)2可以看成是哪兩個數(shù)的和的平方?利用多項式乘法推導(dǎo)公式,使學(xué)生了解公式的來源以及理解乘法公式的本質(zhì)。組織學(xué)生小組討論,使學(xué)生明確公式特征,加深對公式表象的理解。由學(xué)生對公式(a+b)2=a2+2ab+b2進行口頭語言敘述。(1)說明:教師提供三種模式,由學(xué)生選擇一種去解決。培養(yǎng)學(xué)生學(xué)習(xí)的主動性,開闊學(xué)生的思路。(2)同時對滲透數(shù)形結(jié)合思想、換元思想,也是分散、分步突破本節(jié)的難點的第一個層次;(3)體會辯證統(tǒng)一的唯物主義觀點;(4)正確引導(dǎo)學(xué)生學(xué)習(xí)時知識的正遷移。使學(xué)生學(xué)會對公式的正確表述,有利于學(xué)生正確用于計算之中,此時也可以讓學(xué)生對兩個公式特點進行討論歸納,適當總結(jié)一定的口訣:“頭平方,尾平方,兩倍的乘積中間放。”加深學(xué)生對公式中的字母含義的理解,明確字母意義的廣泛性。三、整理新知形成結(jié)構(gòu)完全平方公式并分析公式左右的特征。換元的基本想法四、應(yīng)用新知,體驗成功例1教學(xué):用完全平方公式計算(1)(a+3)2(2)(y—)2(3)(—2x+t)2(4)(—3x—4y)2學(xué)生直接運用公式計算,教師板演,講評時邊口述理由,針對第(4)題(—3x—4y)2可以看成是—3x與4y差的平方,也可以看成—3x與—4y和的平方。提出以下問題:(1)可否看成兩數(shù)和的平方,運用兩數(shù)和的平方公式來計算?(2)可否看成兩數(shù)差的平方,運用兩數(shù)差的平方公式來計算?(3)能不能進行符號轉(zhuǎn)化?如(—3x—4y)2=(3x+4y)2公式鞏固(1)同桌同學(xué)互相編一道用完全平方公式計算題目,然后解答。(2)下列各式的計算,錯在哪里?應(yīng)怎樣改正?①(a+b)2=a2+b2 ②(a—b)2=a2—b2③(a—2b)2=a2+2ab+2b2練習(xí):運用完全平方公式計算:(學(xué)生板演)①(a+5)2②(3+x)2③(y—2)2④(7—y)2⑤(2x+3y)2⑥(—2x—3y)2⑦(3— )2⑧(— — )2例2,運用完全平方公式計算:(1)1012(2)982練習(xí):運用完全平方公式計算(1)912(2)7982(3)(10 )2討論:(1—2x)(—1—2x), (x—2y)(—2y+1)如何計算五、公式拓展,鼓勵探究a2+b2=(a+b)2—______ a2+b2+ _______=(a+b)2a2+b2+ ________ =(a—b)2(a+b)2—(a—b)2=______(a+b+c)2=________提出思考題:(a+b)3=? (a+b)4=?已知 求 的值。已知 ,求x和y的值。(1)遵循及時鞏固原則。(2)針對初一學(xué)生注意力不能持久的特點。(3)形成知識網(wǎng)絡(luò),有利于學(xué)生進一步學(xué)習(xí)公式的運用:(1)直接
點擊復(fù)制文檔內(nèi)容
高考資料相關(guān)推薦
文庫吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號-1