freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式教學(xué)設(shè)計(jì)(實(shí)用8篇)-全文預(yù)覽

2024-11-04 22:29 上一頁面

下一頁面
  

【正文】 按照學(xué)生的認(rèn)知規(guī)律,從具體到抽象,由直觀圖形引導(dǎo)學(xué)生觀察、實(shí)驗(yàn)、猜測(cè)、進(jìn)而論證,最后建立數(shù)學(xué)模型,使學(xué)生對(duì)公式從感性認(rèn)識(shí)、直觀認(rèn)識(shí)到本質(zhì)認(rèn)識(shí)。(2) 通過判斷和舉例,給學(xué)生更多機(jī)會(huì),在自然放松的狀態(tài)下,揭示思維過程和反饋知識(shí)與技能的掌握情況,使老師可以及時(shí)診斷學(xué)情,調(diào)查教學(xué)。當(dāng)學(xué)生迷路的時(shí)候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向。并尊重與理解他人的見解。(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題。會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。②合并同類項(xiàng)法則③多項(xiàng)式乘以多項(xiàng)式法則。通過學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問題,對(duì)可能的答案做出假設(shè)與猜想,并通過多次的檢驗(yàn),得出正確的結(jié)論。教師對(duì)課堂上學(xué)生掌握不夠牢固的知識(shí)進(jìn)行辨析、強(qiáng)調(diào)與補(bǔ)充,學(xué)生也可以談一談個(gè)人的學(xué)習(xí)感受。總結(jié)歸納得到:;三、典例剖析例1運(yùn)用完全平方公式計(jì)算:(1);(2)鼓勵(lì)學(xué)生用多種方法計(jì)算,只要言之成理,只要是自己動(dòng)腦筋發(fā)現(xiàn)的,都要給予肯定,同時(shí)還要引導(dǎo)學(xué)生評(píng)價(jià)哪種算法最簡(jiǎn)潔。”注意到它們的統(tǒng)一性,有于我們更深刻地理解公式特點(diǎn),提高運(yùn)算的靈活性。重點(diǎn)難點(diǎn)重點(diǎn)完全平方公式的比較和運(yùn)用難點(diǎn)完全平方公式的結(jié)構(gòu)特點(diǎn)和靈活運(yùn)用。解釋三角形,梯形面積公式【教法說明】讓學(xué)生感知用割補(bǔ)法求圖形的面積。3.在解決實(shí)際問題時(shí),學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對(duì)應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進(jìn)一步地解決問題。三、知識(shí)結(jié)構(gòu)本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進(jìn)的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過觀察歸納推導(dǎo)公式解決一些實(shí)際問題。應(yīng)用這些公式時(shí),首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。ab+b (漏掉2倍)等錯(cuò)誤..,可以把多項(xiàng)式的完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方.六、作業(yè) P38 3.七、教后反思篇4:《完全平方公式》教學(xué)設(shè)計(jì)教學(xué)目標(biāo)1.了解公式的意義,使學(xué)生能用公式解決簡(jiǎn)單的實(shí)際問題;2.初步培養(yǎng)學(xué)生觀察、分析及概括的能力;3.通過本節(jié)課的教學(xué),使學(xué)生初步了解公式來源于實(shí)踐又反作用于實(shí)踐。:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc四、隨堂練習(xí)P38 1五、小結(jié)本節(jié)課進(jìn)一步學(xué)習(xí)了完全平方公式,在應(yīng)用此公式運(yùn)算時(shí)注意以下幾點(diǎn).,不能出現(xiàn)(a177。完全平方公式的結(jié)構(gòu)特征:(a+b)2=a2+2ab+b2(a—b)2=a2—2ab+b2左邊是 形式,右邊有三項(xiàng),其中兩項(xiàng)是 形式,另一項(xiàng)是()注意:公式中字母的含義廣泛,可以是 ,只要題目符合公式的結(jié)構(gòu)特征,就可以運(yùn)用這一公式,可用符號(hào)表示為:(□177。學(xué)習(xí)重點(diǎn):會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。 也能滿足不同層次學(xué)生的不同要求。(2)結(jié)合學(xué)生實(shí)際情況,貫徹面向全體學(xué)生,因材施教原則。如:三項(xiàng)式的平方,兩項(xiàng)式的立方、四次方等,培養(yǎng)學(xué)生的嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度和鉆研精神。(3)進(jìn)行符號(hào)轉(zhuǎn)化的變換,加深學(xué)生對(duì)公式理解的深度,也為進(jìn)一步學(xué)習(xí)其它知識(shí)打好基礎(chǔ)。(1)遵循及時(shí)鞏固原則。換元的基本想法四、應(yīng)用新知,體驗(yàn)成功例1教學(xué):用完全平方公式計(jì)算(1)(a+3)2(2)(y—)2(3)(—2x+t)2(4)(—3x—4y)2學(xué)生直接運(yùn)用公式計(jì)算,教師板演,講評(píng)時(shí)邊口述理由,針對(duì)第(4)題(—3x—4y)2可以看成是—3x與4y差的平方,也可以看成—3x與—4y和的平方。(2)同時(shí)對(duì)滲透數(shù)形結(jié)合思想、換元思想,也是分散、分步突破本節(jié)的難點(diǎn)的第一個(gè)層次;(3)體會(huì)辯證統(tǒng)一的唯物主義觀點(diǎn);(4)正確引導(dǎo)學(xué)生學(xué)習(xí)時(shí)知識(shí)的正遷移。組織學(xué)生小組討論,使學(xué)生明確公式特征,加深對(duì)公式表象的理解。對(duì)公式(a+b)2=a2+2ab+b2的形式進(jìn)行初步認(rèn)識(shí),接觸。四、教學(xué)程序一、創(chuàng)設(shè)情境,引出課題如圖,有一個(gè)邊長(zhǎng)為a米的正方形廣場(chǎng),則這個(gè)廣場(chǎng)的面積是多少?a若在這個(gè)廣場(chǎng)的相鄰兩邊鋪一條寬為10米的道路,則面積是多少?a 10引導(dǎo)學(xué)生利用圖形分割求面積。(二)教學(xué)手段:利用投影儀輔助教學(xué),突破教學(xué)難點(diǎn),公式的推導(dǎo)變成生動(dòng)、形象、直觀,提高教學(xué)效率。二、教學(xué)方法與手段(一)教學(xué)方法:針對(duì)初一學(xué)生的形象思維大于抽象思維,注意力不能持久等年齡特點(diǎn),及本節(jié)課實(shí)際,采用自主探索,啟發(fā)引導(dǎo),合作交流展開教學(xué),引導(dǎo)學(xué)生主動(dòng)地進(jìn)行觀察、猜測(cè)、驗(yàn)證和交流。能力目標(biāo):滲透建模、化歸、換元、數(shù)形結(jié)合等思想方法,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、求簡(jiǎn)意識(shí)、應(yīng)用意識(shí)、解決問題的能力和創(chuàng)新能力。(2)乘法公式是后續(xù)學(xué)習(xí)的必備基礎(chǔ),不僅對(duì)學(xué)生提高運(yùn)算速度、準(zhǔn)確率有較大作用,更是以后學(xué)習(xí)因式分解、分式運(yùn)算的重要基礎(chǔ),同時(shí)也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴(yán)密的邏輯推理能力的功能。它是在學(xué)生學(xué)習(xí)了代數(shù)式的概念、整式的加減法、冪的運(yùn)算和整式的乘法后進(jìn)行學(xué)習(xí)的,其地位和作用主要體現(xiàn)在以下幾方面:(1)整式是初中代數(shù)研究范圍內(nèi)的一塊重要內(nèi)容,整式的運(yùn)算又是整式中一大主干,乘法公式則是在學(xué)習(xí)了單項(xiàng)式乘法、多項(xiàng)式乘法之后來進(jìn)行學(xué)習(xí)的;一方面是對(duì)多項(xiàng)式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié);另一方面,乘法公式的推導(dǎo)是初中代數(shù)中運(yùn)用推理方法進(jìn)行代數(shù)式恒等變形的開端,通過乘法公式的學(xué)習(xí)對(duì)簡(jiǎn)化某些整式的運(yùn)算、培養(yǎng)學(xué)生的求簡(jiǎn)意識(shí)有較大好處。根據(jù)以上指導(dǎo)思想,同時(shí)參照義務(wù)教育階段《數(shù)學(xué)課程標(biāo)準(zhǔn)》的要求,確定本節(jié)課的教學(xué)目標(biāo)如下:知識(shí)目標(biāo):理解公式的推導(dǎo)過程,了解公式的幾何背景,會(huì)應(yīng)用公式進(jìn)行簡(jiǎn)單的計(jì)算。本節(jié)的難點(diǎn)是從廣泛意義上理解公式中的字母含義,判明要計(jì)算的代數(shù)式是哪兩數(shù)的和(差)的平方。采用小組討論,大組競(jìng)賽等多種形式激發(fā)學(xué)習(xí)興趣。關(guān)于兩數(shù)差的平方公式,我將為學(xué)生提供三種不同的思路,由學(xué)生自己選擇學(xué)習(xí)、理解,然后再歸納的方法進(jìn)行,再通過分層次練習(xí),加以鞏固。(a+b)(根據(jù)初一學(xué)生年齡特點(diǎn),采用圖形變化來激發(fā)學(xué)生學(xué)習(xí)興趣)問題是知識(shí)、能力的生長(zhǎng)點(diǎn),通過富有實(shí)際意義的問題能激活學(xué)生原有認(rèn)知,促使學(xué)生主動(dòng)地進(jìn)行探索和思考。(學(xué)生回答)(x+2y)2是哪兩個(gè)數(shù)的和的`平方?(x+2y)2=( )2+2( )( )+( )2(2x—5y)2是哪兩個(gè)數(shù)的差的平方?(2x+5y)2=( )2+2( )( )+( )2變式 (2x—5y)2可以看成是哪兩個(gè)數(shù)的和的平方?利用多項(xiàng)式乘法推導(dǎo)公式,使學(xué)生了解公式的來源以及理解乘法公式的本質(zhì)。培養(yǎng)學(xué)生學(xué)習(xí)的主動(dòng)性,開闊學(xué)生的思路。三、整理新知形成結(jié)構(gòu)完全平方公式并分析公式左右的特征。已知 ,求x和y的值。(2)進(jìn)一步幫助學(xué)生掌握換元法。提出一個(gè)問題,引導(dǎo)學(xué)生用學(xué)習(xí)研究完全平方公式的方法去研究公式的拓展變形問題。(1)作業(yè)1主要以培養(yǎng)學(xué)習(xí)良好的學(xué)習(xí)習(xí)慣為目的。在減輕學(xué)生的課業(yè)負(fù)擔(dān)同時(shí),注重人本思想,以學(xué)生的能力發(fā)展為重。數(shù)形結(jié)合的數(shù)學(xué)思想和方法。嘗試用自己的語言敘述完全平方公式:完全平方公式的幾何意義:閱讀課本64頁,完成填空。利用完全平方公式計(jì)算:(a+b+c)2 (2) (a—b)3三、學(xué)習(xí)對(duì)照學(xué)習(xí)目標(biāo),通過預(yù)習(xí),你覺得自己有哪些方面的收獲?又存在哪些方面的疑惑?四、自我測(cè)試下列計(jì)算是否正確,若不正確,請(qǐng)訂正;(1) (—1+3a)2=9a2—6a+1(2) (3x2— )2=9x4—(3) (xy+4)2=x2y2+16(4) (a2b—2)2=a2b2—2a2b+4利用乘法公式計(jì)算:(1) (3x+1)2(2) (a—3b)2(3) (—2x+ )2(4) (—3m—4n)2利用乘法公式計(jì)算:9992先化簡(jiǎn),再求值;( m—3n)2—( m+3n)2+2,其中m=2,n=3五、思維拓展如果x2—kx+81是一個(gè)完全平方公式,則k的值是( )多項(xiàng)式4x2+1加上一個(gè)單項(xiàng)式后,使它能成為一個(gè)整式的完全平方,那么加上的單項(xiàng)式可以是( )已知(x+y)2=9, (x—y)2=
點(diǎn)擊復(fù)制文檔內(nèi)容
高考資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1