【總結(jié)】利用放縮法證明數(shù)列型不等式壓軸題摘要:縱觀近幾年高考數(shù)學(xué)卷,壓軸題很多是數(shù)列型不等式,其中通常需要證明數(shù)列型不等式,它不但可以考查證明不等式和數(shù)列的各種方法,而且還可以綜合考查其它多種數(shù)學(xué)思想方法,充分體現(xiàn)了能力立意的高考命題原則。處理數(shù)列型不等式最重要要的方法為放縮法。放縮法的本質(zhì)是基于最初等的四則運(yùn)算,利用不等式的傳遞性,其優(yōu)點(diǎn)是能迅速地化繁為簡,化難為易,達(dá)到事半功倍的效
2025-03-24 12:45
【總結(jié)】1.均值不等式法例1設(shè)求證例2已知函數(shù),若,且在[0,1]上的最小值為,求證:例3求證.例4已知,,求證:≤1.2.利用有用結(jié)論例5求證例6已知函數(shù)求證:對任意且恒成立。例7已知用數(shù)學(xué)歸納法證明;對對都成立,證明(無理數(shù))例8已知不等式。表示不超過的最大整數(shù)。設(shè)正數(shù)數(shù)列滿足:求證再如:設(shè)函數(shù)。(Ⅰ)
2025-08-11 11:16
【總結(jié)】放縮法的常見技巧(1)舍掉(或加進(jìn))一些項(xiàng)(2)在分式中放大或縮小分子或分母。(3)應(yīng)用基本不等式放縮(例如均值不等式)。(4)應(yīng)用函數(shù)的單調(diào)性進(jìn)行放縮(5)根據(jù)題目條件進(jìn)行放縮。(6)構(gòu)造等比數(shù)列進(jìn)行放縮。(7)構(gòu)造裂項(xiàng)條件進(jìn)行放縮。(8)利用函數(shù)切線、割線逼近進(jìn)行放縮。使用放縮法的注意事項(xiàng)(1)放縮的方向要一致。(2)放與縮要適度。(3)很多時(shí)候只對數(shù)列
2025-06-26 16:31
【總結(jié)】第一篇:放縮法證明“數(shù)列+不等式”問題的兩條途徑 放縮法證明“數(shù)列+不等式”問題的兩條途徑 數(shù)列與不等式的綜合問題常常出現(xiàn)在高考的壓軸題中,是歷年命題的熱點(diǎn),解決這類問題常常用到放縮法。用放縮法解...
2025-10-20 04:45
【總結(jié)】第一篇:放縮法(不等式、數(shù)列綜合應(yīng)用) “放縮法”證明不等式的基本策略 近年來在高考解答題中,常滲透不等式證明的內(nèi)容,而不等式的證明是高中數(shù)學(xué)中的一個(gè)難點(diǎn),它可以考察學(xué)生邏輯思維能力以及分析問題和...
2025-10-20 04:33
【總結(jié)】第一篇:用均值不等式證明不等式 用均值不等式證明不等式 【摘要】:不等式的證明在競賽數(shù)學(xué)中占有重要地位.本文介紹了用均值不等式證明幾個(gè)不等式,我們在證明不等式時(shí),常用到均值不等式。要求我們要認(rèn)真分...
2025-10-19 10:42
【總結(jié)】第一篇:證明數(shù)列前n項(xiàng)和不等式的定積分放縮法 證明數(shù)列前n項(xiàng)和不等式的定積分放縮法 摘要:本文深入分析數(shù)列與函數(shù)之間的聯(lián)系,結(jié)合高等數(shù)學(xué)中數(shù)項(xiàng)級(jí)數(shù)[4]的觀點(diǎn)研究高考證明數(shù)列前n項(xiàng)和不等式的相關(guān)問...
2025-10-25 22:04
【總結(jié)】第一篇:證明不等式方法 不等式的證明是高中數(shù)學(xué)的一個(gè)難點(diǎn),題型廣泛,涉及面廣,證法靈活,錯(cuò)法多種多樣,本節(jié)通這一些實(shí)例,歸納整理證明不等式時(shí)常用的方法和技巧。1比較法 比較法是證明不等式的最基本方...
2025-10-20 04:53
【總結(jié)】第一篇:數(shù)列不等式結(jié)合的題的放縮方法 數(shù)列不等式結(jié)合的題的放縮方法 2011-4-611:51提問者:makewest|懸賞分:20|瀏覽次數(shù):559次 2011-4-611:53最佳答案 放...
【總結(jié)】第一篇:放縮法、反證法證明不等式10 放縮法、反證法證明不等式 教學(xué)目標(biāo): 掌握放縮法和反證法證明不等式教學(xué)難點(diǎn): 放縮法和反證法教學(xué)過程: 一、簡要回顧已經(jīng)學(xué)習(xí)過的幾種不等式證明的方法 ...
2025-10-18 23:14
【總結(jié)】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-20 01:36
2025-07-24 19:51
【總結(jié)】不等式的證明【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)∵a0,b>
2025-10-28 13:38
【總結(jié)】第一篇:不等式的多種證明方法 不等式的多種證明方法汪洋,合肥師范學(xué)院 摘要:數(shù)學(xué)是生活中的一門自然科學(xué),而不等式則是構(gòu)成這門自然科學(xué)的眾多基礎(chǔ)中相當(dāng)重要的組成之一,因此本文專門介紹不等式的各種證明...
2025-10-20 00:24
【總結(jié)】第一篇:不等式證明的若干方法 不等式證明的若干方法 摘要:無論是在初等數(shù)學(xué)還是在高等數(shù)學(xué)中,,高等數(shù)學(xué)中不等式證明的常用方法有利用函數(shù)的單調(diào)性、Cauchy不等式、中值定理、泰勒公式、Jensen...
2025-10-19 22:36