【總結】1導數(shù)的運算.2常數(shù)函數(shù)與冪函數(shù)的導數(shù)3???,,.,,如何求它的導數(shù)呢數(shù)對于函那么度體在某一時刻的瞬時速物理意義是運動物點處的切線的斜率在某導數(shù)的幾何意義是曲線我們知道xfy???.,,,個定值所趨于的那時趨近于就是求出當?shù)膶?shù)求函數(shù)根據(jù)函數(shù)的定義xyxxfy?
2024-11-18 01:21
【總結】定義:函數(shù)y=f(x)在x=x0處的瞬時變化率是0000()()li.mlimxxfxxfxyxx???????????,|)(00xxyxf???或00000()()()limlim.xxfxxfxyfxxx????
2024-11-18 12:13
【總結】導數(shù)的概念2121f(x)-f(x)y=xx-x11f(x+x)-f(x)=x復習割線AB的斜率3、在高臺跳水運動中,運動員相對于水面的高度h(單位:米)與起跳后的時間t(單位:秒)存在函數(shù)關系h(t)=++10.
2024-11-17 12:02
【總結】1.1.2導數(shù)的概念一.創(chuàng)設情景(一)平均變化率(二)探究:在高臺跳水運動中,平均速度不能反映他在這段時間里運動狀態(tài),需要用瞬時速度描述運動狀態(tài)。我們把物體在某一時刻的速度稱為瞬時速度.又如何求瞬時速度呢????,?,.).tan(.,時的瞬時速度是多少比如
【總結】變化率問題一個變量相對于另一個變量的變化而變化的快慢程度叫做變化率.問題1氣球膨脹率我們都吹過氣球回憶一下吹氣球的過程,可以發(fā)現(xiàn),隨著氣球內空氣容量的增加,氣球的半徑增加越來越慢.從數(shù)學角度,如何描述這種現(xiàn)象呢?問題1氣球膨脹率
【總結】12???,??th,.,at,,規(guī)律導數(shù)的符號有什么變化地相應特點此點附近的圖象有什么是多少呢在此點的導數(shù)函數(shù)那么距水面的高度最大高臺跳水運動員時我們發(fā)現(xiàn)觀察圖?thOa?圖??0th'?單調遞增??0th'?單調遞減??0ah'??圖.,值的過程形象解釋
2024-11-18 15:24
【總結】導數(shù)在研究函數(shù)中的應用單調性教學目的:;.教學重點:利用導數(shù)判斷函數(shù)單調性.教學難點:利用導數(shù)判斷函數(shù)單調性.授課類型:新授課課時安排:1課時.教具:多媒體、實物投影儀.內容分析:以前,我們用定義來判斷函數(shù)的單調性.對于任意的兩個數(shù)x1,x2∈I,且當
2024-12-05 09:20
【總結】12?分的創(chuàng)立導致了微積期的研究數(shù)量的變化規(guī)律進行長我們可以對通過研究函數(shù)這些性質常重要的或最小值等性質是非與慢以及函數(shù)的最大值減的快了解函數(shù)的增與減、增研究函數(shù)時型化規(guī)律的重要數(shù)學模函數(shù)是描述客觀世界變,,.,..,,數(shù)中的作用可以體會導數(shù)在研究函從中你的性質我們運用導數(shù)研究函數(shù)下面34?????
【總結】§導數(shù)的概念教學目標:1.了解瞬時速度、瞬時變化率的概念;2.理解導數(shù)的概念,知道瞬時變化率就是導數(shù),體會導數(shù)的思想及其內涵;3.會求函數(shù)在某點的導數(shù)教學重點:瞬時速度、瞬時變化率的概念、導數(shù)的概念;教學難點:導數(shù)的概念.教學過程:一.創(chuàng)設情景(一)平均變化率(二)探究:計算運動員在
2024-11-19 17:29
【總結】120y0x1xx?y?xyOy=f(x)1yAB00()()fxxfxyxx???????物體運動的平均速度00()()sttststt???????物體運動的瞬時速度0000()()limlimttstts
【總結】12??????????????????.,.,,,,.,,.,,00000值在相應區(qū)間上所有函數(shù)數(shù)于函大不小那么值點小的最大是函數(shù)如果哪個值最小哪個值最大上某個區(qū)間我們往往更關心函數(shù)在數(shù)性質時函在解決實際問題或研究但是的值更小更大附近找不到比那么在值點小的極大
【總結】湖南省邵陽市隆回二中選修2-2學案導數(shù)及其應用:基本初等函數(shù)的導數(shù)公式及導數(shù)的運算法則(2)導學案【學習目標】在掌握基本初等函數(shù)導數(shù)公式的基礎上,理解并掌握復合函數(shù)的求導法則,會求簡單的復合函數(shù)的導數(shù)。【自主學習】(認真自學課本P16-17)一、復習與思考:1、基本初等函數(shù)的導數(shù)公式有哪些?導數(shù)的四則運算法則是什么?
2024-11-19 23:14
【總結】3.2.1幾個常用函數(shù)的導數(shù)學案學習目標1.能夠用導數(shù)的定義求幾個常用函數(shù)的導數(shù);2.利用公式解決簡單的問題。學習重點和難點[來1.重點:推導幾個常用函數(shù)的導數(shù);2.難點:推導幾個常用函數(shù)的導數(shù)。學習過程一.自學、思考、練習憶一憶?1、函數(shù)在一點處導數(shù)的定義;
2024-12-08 22:40
【總結】導數(shù)及其應用高考題第1題.設函數(shù)2()ln(23)fxxx???(Ⅰ)討論()fx的單調性;(Ⅱ)求()fx在區(qū)間3144???????,的最大值和最小值.答案:解:()fx的定義域為32?????????,.(Ⅰ)224622(21)(1)()223
2024-12-02 10:13
【總結】第1課時導數(shù)與函數(shù)的單調性,直觀探索并掌握函數(shù)的單調性與導數(shù)的關系...對于函數(shù)y=x3-3x,如何判斷單調性呢?你能畫出該函數(shù)的圖像嗎?定義法是解決問題的最根本方法,但定義法較繁瑣,又不能畫出它的圖像,那該如何解決呢?問題1:增函數(shù)和減函數(shù)一般地,