【總結】導數(shù)及其應用第一章導數(shù)的運算第1課時常數(shù)函數(shù)與冪函數(shù)的導數(shù)第一章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習凡事皆有規(guī)律,導數(shù)也不例外,導數(shù)應用很廣泛,可是用定義求導卻比較復雜.本節(jié)將學習基本初等函數(shù)的導數(shù)公式,熟記基本初等函數(shù)的導數(shù)公式,可以讓我們在解決導數(shù)問題時得心應手
2024-11-17 20:06
【總結】導數(shù)的實際應用【教學目標】利用導數(shù)解決實際問題中的最優(yōu)化問題,掌握建立數(shù)學模型的方法,形成求解優(yōu)化問題的思路和方法.【教學重點】實際問題中的導數(shù)應用【教學難點】數(shù)學建模一、課前預習::31頁例1、例2,總結利用導數(shù)解決生活中的優(yōu)化問題的一般步驟:例1有一塊邊長為a的正方形鐵板,現(xiàn)從鐵板的四個角各截去一個相同的小正方
2024-12-03 11:30
【總結】幾個常用函數(shù)的導數(shù)一、復習,過曲線某點的切線的斜率的精確描述與求值;物理學中,物體運動過程中,在某時刻的瞬時速度的精確描述與求值等,都是極限思想得到本質相同的數(shù)學表達式,將它們抽象歸納為一個統(tǒng)一的概念和公式——導數(shù),導數(shù)源于實踐,又服務于實踐.:(1)()();yfx
2024-11-17 17:34
【總結】復數(shù)z=a+bi直角坐標系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標系來表示復數(shù)的平面x軸------實軸y軸------虛軸(數(shù))(形)------復數(shù)平面(簡稱復平面)一一對應z=a+bi復數(shù)的幾何意義(一)
2024-11-18 15:23
【總結】-類比推理,發(fā)明了鋸,發(fā)明了潛水艇.,發(fā)現(xiàn)火星與地球有許多類似的特征;1)火星也繞太陽運行、饒軸自轉的行星;2)有大氣層,在一年中也有季節(jié)變更;3)火星上大部分時間的溫度適合地球上某些已知生物的生存,等等.科學家猜想;火星上也可
2024-11-18 15:24
【總結】§演繹推理小明是一名高二年級的學生,17歲,迷戀上網(wǎng)絡,沉迷于虛擬的世界當中。由于每月的零花錢不夠用,便向親戚要錢,但這仍然滿足不了需求,于是就產生了歹念,強行向路人搶取錢財。但小明卻說我是未成年人而且就搶了50元,這應該不會很嚴重吧???情景創(chuàng)設1:生活中的例子如果你是法官,你會如何判決呢?小明到底是不是犯
2024-11-18 01:21
【總結】:)(00xxkyy???0已知函數(shù)y=f(x)在點x=x及其附近有定義00?叫做函數(shù)y=f(x)在x到x+x之間的平均變化率.00()()x0,fxxfxyxx?????????當時比值'000)()()lim
2024-11-17 05:49
【總結】【成才之路】2021-2021學年高中數(shù)學第1章導數(shù)及其應用知能基礎測試新人教B版選修2-2時間120分鐘,滿分150分.一、選擇題(本大題共12個小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.曲線y=12x2-2x在點??????1,-32處的切線的傾斜角為(
2024-12-03 04:56
【總結】【成才之路】2021-2021學年高中數(shù)學第1章第1課時利用導數(shù)判斷函數(shù)的單調性課時作業(yè)新人教B版選修2-2一、選擇題1.函數(shù)f(x)=(x-3)ex的單調增區(qū)間是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)[答案]D[解析]f′(x)
2024-12-03 11:28
【總結】反證法一.反證法證明命題“設p為正整數(shù),如果p2是偶數(shù),則p也是偶數(shù)”,我們可以不去直接證明p是偶數(shù),而是否定p是偶數(shù),然后得到矛盾,從而肯定p是偶數(shù)。具體證明步驟如下:假設p不是偶數(shù),可令p=2k+1,k為整數(shù)??傻胮2=4k2+4k+1,此式表明,p2是奇數(shù),這與假設矛盾,因此假設p不是偶數(shù)不成立,從而證明
【總結】演繹推理演繹推理課時安排:兩課時課型:新授課教學目標:一、知識與技能:了解演繹推理的含義,能利用“三段論”進行簡單的推理。二、過程與方法:結合具體實例,了解演繹推理與合情推理的聯(lián)系和差異。三、情感態(tài)度價值觀:
【總結】1、觀察1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=,……由上述具體事實能得到怎樣的結論?2、在平面內,若a⊥c,b⊥c,則a//b.類比地推廣到空間,你會得到什么結論?并判斷正誤。正確錯誤(可能相交)
【總結】函數(shù)的極值與導數(shù)(a,b)內,如果,那么函數(shù)在這個區(qū)間內單調遞增;如果,那么函數(shù)在這個區(qū)間內單調遞減.0)(??xf)(xfy?0)(??xf)(xfy?2.對x∈(a,b),如果
2024-11-18 12:13
【總結】函數(shù)的最大(小)值與導數(shù)21、函數(shù)的極值設函數(shù)f(x)在點x0附近有定義,?如果對X0附近的所有點,都有f(x)f(x0),則f(x0)是函數(shù)f(x)的一個極小值,
2024-11-17 12:01
【總結】2020/12/24的應用導數(shù)公式表及數(shù)學軟件2020/12/24.,表導數(shù)公式等函數(shù)的的基本初使用下面可以直接今后我們?yōu)榱朔奖?020/12/24式基本初等函數(shù)的導數(shù)公????;xf,cxf.'01??則若??????;nxxf,Nnxxf.n'n12?????則