【總結】排列組合試題精選一、選擇題1、如圖,是中國西安世界園藝博覽會某區(qū)域的綠化美化示意圖,其中A、B、C、D是被劃分的四個區(qū)域,現(xiàn)有6種不同顏色的花,要求每個區(qū)域只能栽同一種花,允許同一顏色的花可以栽在不同的區(qū)域,但相鄰的區(qū)域不能栽同一色花,則不同的栽種方法共有(???)種。A.120?????
2025-03-25 02:37
【總結】排列組合應用題求解專題 排列組合應用問題的基本題型和方法歷年高考排列組合應用題型一、分類與分步法二、排隊問題三、同元問題隔板法四、分配與分組問題五、總結性例題例一、某人手中有5張撲克牌,其中2張為不同花色的2,3張為不同花色的A,有5次出牌機會,每次只能出一種點數(shù)的牌但張數(shù)不限,此人有多少種不同的出牌方法?解:出牌的方法可分為以
2025-07-19 02:52
【總結】排列組合復習學案1重復排列“求冪運算”重復排列問題要區(qū)分兩類元素:一類可以重復,另一類不能重復。把不能重復的元素看作“客”,能重復的元素看作“店”,則通過“住店法”可順利解題。例18名同學爭奪3項冠軍,獲得冠軍的可能性有()2.特殊元素(位置)用優(yōu)先法:把有限制條件的元素(位置)稱為特殊元素(位置),可優(yōu)先將它(們)安排好,后再安排其它元素。
2025-04-17 01:31
【總結】12除做到:排列組合分清,加乘原理辯明,避免重復遺漏外,還應注意積累排列組合問題得以快速準確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個數(shù)字組成無重復的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(1)數(shù)字1不排在個位和千位(2)數(shù)字1不在個位,數(shù)字6不在千位。分析:(1)個位和千位有5個數(shù)字可供選擇,其余2位有四個可供選擇,由乘法原理:=240
2025-03-25 02:36
【總結】排列組合排列定義???從n個不同的元素中,取r個不重復的元素,按次序排列,稱為從n個中取r個的無重排列。排列的全體組成的集合用P(n,r)表示。排列的個數(shù)用P(n,r)表示。當r=n時稱為全排列。一般不說可重即無重??芍嘏帕械南鄳浱枮镻(n,r),P(n,r)。組合定義從n個不同元素中取r個不重復的元素組成一個子集,而不考慮其元素的順序,稱
2025-06-25 23:09
【總結】完美WORD格式專題三:排列、組合及二項式定理一、排列、組合與二項式定理【基礎知識】(加法原理).(乘法原理).==.(n,m∈N*,且m≤n).===(n,m∈N*,且m≤n).:(1)=;(2)+=(3).:.:
2025-06-25 22:56
【總結】主題課題:兩個原理和排列知識內容:1、分類計數(shù)原理和分步計數(shù)原理2、排列、排列數(shù)概念3、排列數(shù)的計算公式4.排列應用題能力目標:1、通過兩個原理的學習,培養(yǎng)學生的解決實際問題的能力;2、通過排列的學習,可以遷移知識,更好的運用兩個原理,并能解決稍復雜的數(shù)學問題。3、培養(yǎng)學生的分析問題能力、解決問題的能力。數(shù)學思想:轉化思想
【總結】排列、組合與概率的復習知識目標:1.排列組合問題的常見處理方法總結2.概率問題的常見處理方法總結能力要求:數(shù)學思想:逐步培養(yǎng)學生養(yǎng)成運用分類與分步、對立事件等數(shù)學思想方法思考問題、解決問題的習慣通過常見問題處理方法的總結,使學生能夠熟練處理排列、組合與概率的常規(guī)問題一、排列、組合常見問題的處理方法回顧:
2024-11-09 22:48
【總結】高考數(shù)學總復習------排列組合與概率統(tǒng)計【重點知識回顧】⑴分類計數(shù)原理與分步計數(shù)原理是關于計數(shù)的兩個基本原理,兩者的區(qū)別在于分步計數(shù)原理和分步有關,分類計數(shù)原理與分類有關.⑵排列與組合主要研究從一些不同元素中,任取部分或全部元素進行排列或組合,,與順序有關的屬于排列問題,與順序無關的屬于組合問題.⑶排列與組合的主要公式①排列數(shù)公式:(m≤n) A
2025-08-05 18:20
【總結】排列組合常見題型及解題策略排列組合問題是高考的必考題,它聯(lián)系實際生動有趣,但題型多樣,思路靈活,不易掌握,實踐證明,掌握題型和解題方法,識別模式,熟練運用,是解決排列組合應用題的有效途徑;下面就談一談排列組合應用題的解題策略.一.可重復的排列求冪法:重復排列問題要區(qū)分兩類元素:一類可以重復,另一類不能重復,把不能重復的元素看作“客”,能重復的元素看作“店”,則通過“住店法”可順利
2025-08-05 18:14
【總結】第1頁共25頁普通高中課程標準實驗教科書—數(shù)學[人教版]高三新數(shù)學第一輪復習教案(講座39)—排列、組合、二項式定理一.課標要求:1.分類加法計數(shù)原理、分步乘法計數(shù)原理通過實例,總結出分類加法計數(shù)原理、分步乘法計數(shù)原理;能根據(jù)具體問題的特征,選擇分類加法計數(shù)原理或分步乘法計數(shù)原理解決一些簡單的實際問題;
2025-07-24 14:36
【總結】第一篇:排列組合典型例題 典型例題一 例1用0到9這10個數(shù)字.可組成多少個沒有重復數(shù)字的四位偶數(shù)? 分析:這一問題的限制條件是:①沒有重復數(shù)字;②數(shù)字“0”不能排在千位數(shù)上;③個位數(shù)字只能是0...
2024-10-21 11:00
【總結】排列組合教材分析四色問題?任意一張地圖,用一種顏色對一個地區(qū)著色,那么一共只需要四種顏色就能保證每兩個相鄰的地區(qū)顏色不同。穩(wěn)定的婚姻問題?如果一個村子里每一個女孩都恰好認識k個男孩,并且每一個男孩也恰好認識k個女孩,那么每一個女孩都可以嫁給她認識的一個男孩,并且每一個男孩都可以娶一個他認識的女孩.穩(wěn)定的婚姻問題?但是
2025-08-15 22:11
【總結】從n個不同元素中,任取m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.:從n個不同元素中,任取m個元素,并成一組,叫做從n個不同元素中取出m個元素的一個組合.:::)!(!)1()2)(1(mnnmnnnnAmn????????排列與組合
2025-03-05 11:20
【總結】排列組合方法一解決排列組合問題的幾種思想1.主元思想某單位安排7位工作人員在10月1日至10月7日值班,每人值班1天,其中甲乙2人都不安排在10月1日和10月7日,則不同安排方法有多少種?解析先排甲乙,有5×4=20種再排其他5人,有5×4×3×2×1=120種共120
2025-08-18 16:59