【總結】等差數(shù)列與等比數(shù)列的應用復習提問1、口答:(1)等差數(shù)列的通項公式______?na前n項和公式_____?nS或_____?nS(2)等比數(shù)列的通項公式______?na前n項和公式:當1?q時,_____?nS或_____?nS數(shù)列等差
2025-05-12 17:18
【總結】第十四講:數(shù)列求和及綜合應用一、考綱和課標要求:1、掌握數(shù)列求和的常見的基本方法2、解決數(shù)列間綜合及數(shù)列與其他知識綜合的相關問題3、09考綱有2個C級要求在這部分出現(xiàn)二:本專題需解決的問題:(1)化歸為基本數(shù)列的求和問題(2)數(shù)列間的綜合(基本數(shù)列、關聯(lián)數(shù)列)(3)數(shù)列與其
2024-11-12 01:26
【總結】第三節(jié)等比數(shù)列及其前n項和基礎梳理從第二項起,每一項與它的前一項的比等于同一常數(shù)公比q1.等比數(shù)列的定義如果一個數(shù)列那么這個數(shù)列叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的,通常用字母表示.a1qn2.等比數(shù)列的通項公式設等比數(shù)列{an}的首項為a1
2024-11-12 01:24
【總結】第34講等比數(shù)列的概念及基本運算.n項和公式.等比關系,并能用有關知識解決相應的問題..{an}的前n項和Sn=an-3(a為不等于零的實數(shù)),那么數(shù)列{an}()Da≠1時是等比數(shù)列2項起是等比數(shù)列2項起是等比數(shù)列或等差數(shù)列由Sn
2024-11-10 07:55
【總結】等比數(shù)列的定義)2(?n)1(?nqaann??12.qaann??1或1.qaaaaaaaaaann????????145342312如果等比數(shù)列{an}的首項是a1,公比是q,則11??
2025-07-25 15:34
【總結】由此題,如何通過數(shù)列前n項和來求數(shù)列通項公式???首項與公差各是多少?數(shù)列嗎?如果是,它的并判斷這個數(shù)列是等差,求這個數(shù)列的通項公式項和為的前:已知數(shù)列例,1212nnSnann??)1(?????????????n1na2a1a1nSna1na2a1anS??與解:根據(jù)212122122)]1()1[()(1???????
2024-11-10 00:24
【總結】1等差數(shù)列求和公式:(1)Sn=n(a1+an)/2(2)Sn=na1+n(n-1)d/22等比數(shù)列求和公式:(1)Sn=1-qa1(1-qn)q≠1q≠1(2)Sn=1-qa1-anq當q=1時,Sn=na1練習:求和1.1+2+3+……+n答案:Sn=n
2025-05-12 17:19
【總結】第二節(jié)等差數(shù)列及其前n項和基礎梳理從第二項起,每一項與前一項的差都等于同一個常數(shù)常數(shù)公差d遞增數(shù)列遞減數(shù)列常數(shù)列1.等差數(shù)列的定義如果一個數(shù)列,那么這個數(shù)列就叫做等差數(shù)列,這個叫做等差數(shù)列的,通常用字母表示.當d
2024-11-11 05:49
【總結】歡迎交流唯一QQ1294383109希望大家互相交流等差數(shù)列、等比數(shù)列一、選擇題1.在等差數(shù)列{an}中,a2=2,a3=4,則a10=()A.12B.14C.16D.18解析:選d,則d=a3-a2=2,因而a10=a2+8d=2+2×
2025-08-13 20:05
【總結】2020屆高考數(shù)學二輪復習系列課件09《函數(shù)與導數(shù)的綜合應用》函數(shù)的綜合應用?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析要點·疑點·考點就是要用運
2024-11-11 08:50
【總結】知識改變命運,學習成就未來2011年高三數(shù)學一輪復習精品導學案:第五章數(shù)列【知識特點】(1)數(shù)列是高中數(shù)學的主要內容之一是高考的??純热?;(2)數(shù)列具有函數(shù)特征,又能構成獨特的遞推關系,故使得數(shù)列與函數(shù)、方程、不等式等知識有較密切的聯(lián)系,因此高考命題時常將數(shù)列與函數(shù)、不等式、向量等交匯,考查學生的邏輯思維能力、運算推理能力,呈現(xiàn)出綜合性強、立意新的特點;(3)數(shù)
2025-06-08 00:01
【總結】2022/2/41學軍課件模板高三數(shù)學第一輪復習2022/2/42學軍課件模板學習目標1、理解等差數(shù)列的概念、通項公式、等差中項公式,會用公式解決問題2、掌握等差數(shù)列的前n項和公式,體會等差數(shù)列的通項及等差數(shù)列的前n項和可分別表示為一次函數(shù)和二次函數(shù)3、探索并總結等差數(shù)列的性質,會運用性質解決有關問題
2025-01-07 13:17
【總結】2022屆高三文藝班數(shù)學期末復習綜合試卷(2)一.填空題(本大題共14小題,每小題5分,共70分)z滿足()(1)1iiiz????(i是虛數(shù)單位),則復數(shù)z的模z=_______.2.函數(shù)212log(2)yxx??的定義域是,單調遞減區(qū)間是___________.3
2025-01-09 11:05
【總結】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第2課時等差、等比數(shù)列的通項及求和公式要點·疑點·考點(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S
2025-08-16 01:47
【總結】{an}是公差為d的等差數(shù)列{bn}是公比為q的等比數(shù)列性質1:an=am+(n-m)d性質1:性質2:若an-k,an,an+k是{an}中的三項,則2an=an-k+an+k性質2:若bn-k,bn,bn+k是{bn}的三項,則=bn-k?bn+k性質3:若n+m=p+q
2025-01-08 00:05