【總結(jié)】第一篇:常微分方程答案第三章 =x+y2通過點(0,0)的第三次近似解。dx 解:f(x,y)=x+y2,令j0(x)=y0=0,則 j1(x)=y0+òf(x,j0(x))dx=òxdx=...
2024-10-27 20:18
【總結(jié)】第十章常微分方程與差分方程嘉興學院17February2022第1頁差分方程第十章常微分方程與差分方程嘉興學院17February2022第2頁差分的概念及性質(zhì).Δ,)1()()1()0(:).(111210xxxxxxxyyyyy
2025-01-20 04:56
【總結(jié)】本章重點講述:A線性微分方程的基本理論;B常系數(shù)線性方程的解法;C某些高階方程的降階和二階方程的冪級數(shù)解法。對于二階及二階以上的微分方程的解包括基本理論和求解方法。這部分內(nèi)容有兩部分:1、線性微分方程(組):在第四、五章討論
2024-10-19 17:11
【總結(jié)】第一節(jié)微分方程的基本概念教學目的:理解并掌握微分方程的基本概念,主要包括微分方程的階,微分方程的通解、特解及微分方程的初始條件等教學重點:常微分方程的基本概念,常微分方程的通解、特解及初始條件教學難點:微分方程的通解概念的理解教學內(nèi)容:1、首先通過幾個具體的問題來給出微分方程的基本概念。(1)一條曲線通過點(1,2),且在該曲
2025-08-22 22:49
【總結(jié)】218.111.1常微分方程教學大綱(OrdinaryDifferentialEquations)學分數(shù)3周學時3+1:常微分方程(一學期課程)一學期:4*18.:(1)課
2025-08-22 20:43
【總結(jié)】第六章常微分方程—不定積分問題—微分方程問題推廣微分方程的基本概念一階微分方程二階微分方程用Matlab軟件解二階常系數(shù)非齊次微分方程微分方程的基本概念微分方程的基本概念引例幾何問題物理問題解:設(shè)所求曲線方程為y=y(x),則有如下關(guān)系式:
2025-04-29 01:07
【總結(jié)】第九章微分方程第一節(jié)微分方程的概念引例:一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設(shè)所求曲線為2dyxdx?2,1??yx時其中??xdxy2,2Cxy??即,1?C求得.12??xy所求曲線方程為微分方程
2025-01-14 16:39
【總結(jié)】目錄上頁下頁返回結(jié)束第五章線性微分方程組前面幾章研究了只含一個未知函數(shù)的一階或高階方程,但在許多實際的問題和一些理論問題中,往往要涉及到若干個未知函數(shù)以及它們導數(shù)的方程所組成的方程組,即微分方程組,本章將介紹一階微分方程組的一般解法,重點仍在線性方程組的基本理論和常系數(shù)線性方程的解法上.
【總結(jié)】偏微分方程數(shù)值解試題(06B)參考答案與評分標準信息與計算科學專業(yè)一(10分)、設(shè)矩陣對稱,定義,.若,則稱稱是的駐點(或穩(wěn)定點).矩陣對稱(不必正定),求證是的駐點的充要條件是:是方程組的解解:設(shè)是的駐點,對于任意的,令,(3分),即對于任意的,,特別取,則有,得到.(3分)反之,若滿足,則對于任意的,,因此是的最小值點.(4分)評分標
2025-06-19 20:37
【總結(jié)】第八節(jié)高階線性微分方程一、概念的引入例:設(shè)有一彈簧下掛一重物,如果使物體具有一個初始速度00?v,物體便離開平衡位置,并在平衡位置附近作上下振動.試確定物體的振動規(guī)律)(txx?.解受力分析;.1cxf??恢復(fù)力;.2dtdxR???阻力xxo,maF??,22dtdxcx
2024-10-17 00:48
【總結(jié)】第二章控制系統(tǒng)的數(shù)學模型?掌握不同物理系統(tǒng)微分方程的建立?掌握拉氏變換及其性質(zhì)?熟悉基本環(huán)節(jié)的傳遞函數(shù)?能用拉氏變換、框圖化簡及梅森增益公示求系統(tǒng)的傳遞函數(shù)教學目的?建立系統(tǒng)的微分方程?拉氏變換的應(yīng)用及框圖化簡學習重點和難點本次課程作業(yè)2-172-13(c)把求傳遞函數(shù)改為求微分方程
2025-05-12 11:22
【總結(jié)】1.=2xy,并滿足初始條件:x=0,y=1的特解。解:=2xdx兩邊積分有:ln|y|=x+cy=e+e=cex另外y=0也是原方程的解,c=0時,y=0原方程的通解為y=cex,x=0y=1時c=1特解為y=e.2.ydx+(x+1)dy=0并求滿足初始條件:x=0,y=1的特解。解:ydx=-(x+1)dydy=-dx兩邊積分
2025-06-26 20:41
【總結(jié)】微分方程邊值問題的數(shù)值方法本部分內(nèi)容只介紹二階常微分方程兩點邊值問題的的打靶法和差分法。二階常微分方程為 當關(guān)于為線性時,即,此時變成線性微分方程 對于方程或,其邊界條件有以下3類:第一類邊界條件為 當或者時稱為齊次的,否則稱為非齊次的。第二類邊界條件為 當或者時稱為齊次的,否則稱為非齊次的。第三類邊界條件為 其中,當或者稱為
2025-06-07 19:14
【總結(jié)】微分方程數(shù)值解課程設(shè)計姓名*****學號200******專業(yè)信息與計算科學課設(shè)題目:對初邊值問題2222xutu?????(0x1)0||10??
2025-01-12 04:03
【總結(jié)】項目四無窮級數(shù)與微分方程實驗1無窮級數(shù)(基礎(chǔ)實驗)實驗?zāi)康挠^察無窮級數(shù)部分和的變化趨勢,進一步理解級數(shù)的審斂法以及冪級數(shù)部分和對函數(shù)的逼近.掌握用Mathematica求無窮級數(shù)的和,求冪級數(shù)的收斂域,展開函數(shù)為冪級數(shù)以及展開周期函數(shù)為傅里葉級數(shù)的方法.數(shù)項級數(shù)(教材)(1)觀察級數(shù)的部分和序列的變化趨勢
2025-06-30 10:26