【總結(jié)】函數(shù)的奇偶性與周期性一、函數(shù)奇偶性定義奇偶性定 義圖象特點偶函數(shù)如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)是偶函數(shù)關(guān)于y軸對稱奇函數(shù)如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)是奇函數(shù)關(guān)于原點對稱二、需要注意的問題1.判斷函數(shù)的奇偶性,易忽視判斷函數(shù)定義域是否關(guān)
2025-04-16 23:39
【總結(jié)】典型例題函數(shù)的單調(diào)性和奇偶性例1?(1)畫出函數(shù)y=-x2+2|x|+3的圖像,并指出函數(shù)的單調(diào)區(qū)間.解:函數(shù)圖像如下圖所示,當x≥0時,y=-x2+2x+3=-(x-1)2+4;當x<0時,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函數(shù)是增函數(shù):在[-1,0]和[1,+∞)上,函數(shù)是減函數(shù).評析?函數(shù)單調(diào)性是對某個
2025-03-24 12:17
【總結(jié)】函數(shù)的單調(diào)性與奇偶性1.若為偶函數(shù),則下列點的坐標在函數(shù)圖像上的是A.B.C.D.2.下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是A.B.C.3.下列判斷中正確的是
【總結(jié)】函數(shù)復(fù)習(xí)內(nèi)容:函數(shù)的定義域、值域、單調(diào)性、奇偶性、對稱性、周期性、函數(shù)的綜合應(yīng)用一.常見函數(shù)(基本初等函數(shù)):1.2.3.4.5.冪函數(shù):(包括前四個函數(shù))6.指數(shù)函數(shù):7.對數(shù)函數(shù):8.三角函數(shù):,,由以上函數(shù)進行四則運算、復(fù)合運算得到的函數(shù)都是初等函數(shù)。如:,,,試著分析以上函數(shù)的構(gòu)成。二.
2025-08-04 14:22
【總結(jié)】 奇偶性與單調(diào)性及典型例題 函數(shù)的單調(diào)性、奇偶性是高考的重點內(nèi)容之一,、單調(diào)性的定義,掌握判定方法,正確認識單調(diào)函數(shù)與奇偶函數(shù)的圖象. 難點磁場 (★★★★)設(shè)a0,f(x)=是R上的偶函數(shù),(1)求a的值;(2)證明:f(x)在(0,+∞)上是增函數(shù). 案例探究 [例1]已知函數(shù)f(x)在(-1,1)上有定義,f()=-1,當且僅當0
2025-03-25 00:27
【總結(jié)】百度搜索李蕭蕭文檔百度搜索李蕭蕭文檔難點8奇偶性與單調(diào)性(二)函數(shù)的單調(diào)性、奇偶性是高考的重點和熱點內(nèi)容之一,特別是兩性質(zhì)的應(yīng)用更加突出.本節(jié)主要幫助考生學(xué)會怎樣利用兩性質(zhì)解題,掌握基本方法,形成應(yīng)用意識.●難點磁場(★★★★★)已知偶函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,解不等式f[log2(x
2025-08-14 13:54
【總結(jié)】函數(shù)單調(diào)性和奇偶性一、選擇題(每小題5分,一共12道小題,總分60分)1.命題“若都是偶數(shù),則也是偶數(shù)”的逆否命題是()A.若不是偶數(shù),則與都不是偶數(shù)B.若是偶數(shù),則與不都是偶數(shù)C.若是偶數(shù),則與都不是偶數(shù)D.若不是偶數(shù),則與不都是偶數(shù)2.下列函數(shù)是偶函數(shù)的是()A.B.C.D.3.下列函數(shù)中,在其定
2025-03-24 12:16
【總結(jié)】 函數(shù)的單調(diào)性和奇偶性一、目標認知學(xué)習(xí)目標: 、奇偶性定義; 、證明函數(shù)在給定區(qū)間上的單調(diào)性; ??; .重點、難點: ??; .二、知識要點梳理 (1)增函數(shù)、減函數(shù)的概念 一般地,設(shè)函數(shù)f(x)的定義域為A,區(qū)間 如果對于M內(nèi)的任意兩個自變量的值x1、x2,當x1<x2時,都
2025-08-05 02:38
【總結(jié)】(一)課型:新授課教學(xué)目標:(1)知識與能力:理解增函數(shù)、減函數(shù)、單調(diào)區(qū)間、單調(diào)性等概念,掌握增(減)函數(shù)的證明和判別,學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。(2)過程與方法:引導(dǎo)學(xué)生通過觀察,歸納,抽象,概括自主構(gòu)建單調(diào)性的概念,使學(xué)生領(lǐng)會數(shù)形結(jié)合的思想方法。(3)情感,態(tài)度,價值觀:培養(yǎng)學(xué)生主動探索,敢于創(chuàng)新的意識和精神,使學(xué)生理性思考生活中的增長和遞減的現(xiàn)象。
2025-07-25 05:18
【總結(jié)】函數(shù)奇偶性、對稱性與周期性奇偶性、對稱性和周期性是函數(shù)的重要性質(zhì),下面總結(jié)關(guān)于它們的一些重要結(jié)論及運用它們解決抽象型函數(shù)的有關(guān)習(xí)題。一、幾個重要的結(jié)論(一)函數(shù)圖象本身的對稱性(自身對稱)2、的圖象關(guān)于直線對稱。3、的圖象關(guān)于直線對稱。4、的圖象關(guān)于直線對稱。5、的圖象關(guān)于點對稱。6、
2025-06-18 20:22
【總結(jié)】函數(shù)單調(diào)性、奇偶性練習(xí)一、選擇題1.若函數(shù)f(x)=x(x∈R),則函數(shù)y=-f(x)在其定義域內(nèi)是( )A.單調(diào)遞增的偶函數(shù) B.單調(diào)遞增的奇函數(shù)C.單調(diào)遞減的偶函數(shù) D.單調(diào)遞減的奇函數(shù)2.下列函數(shù)中是奇函數(shù)且在(0,1)上遞增的函數(shù)是( )A.f(x)=x+ B.f(x)=x2-C.f(x)= D.f(x)=x33.已知y=f(x)是定義在
2025-06-18 20:37
【總結(jié)】嚴守俊216355813529652696《函數(shù)的奇偶性周期性對稱性》第10頁共10頁 抽象函數(shù)的對稱性、奇偶性與周期性常用結(jié)論:抽象函數(shù)是指沒有給出具體的函數(shù)解析式或圖像,只給出一些函數(shù)符號及其滿足的條件的函數(shù),如函數(shù)的定義域,解析遞推式
2025-05-27 22:48
【總結(jié)】函數(shù)的單調(diào)性 知識梳理1.單調(diào)性概念一般地,設(shè)函數(shù)的定義域為:(1)如果對于定義域內(nèi)的某個區(qū)間上的任意兩個自變量的值,當時,都有,那么就說函數(shù)在區(qū)間上是增函數(shù);(2)如果對于定義域內(nèi)的某個區(qū)間上的任意兩個自變量的值,當時,都有,那么就說函數(shù)在區(qū)間上是減函數(shù).2.單調(diào)性的判定方法(1)圖像法:從左往右,圖像上升即為增函數(shù),從左往右,圖像下降即為減函數(shù)。
【總結(jié)】第六講函數(shù)的單調(diào)性?奇偶性?周期性走進高考第一關(guān)基礎(chǔ)關(guān)教材回歸(1)函數(shù)的單調(diào)性的概念①一般地,設(shè)函數(shù)f(x)的定義域為I,如果對于定義域I內(nèi)某個區(qū)間D上的任意兩個自變量的值x1,x2,當x1x2時,a.若________________,則f(x)在區(qū)間D上是增函數(shù).b
2025-08-01 17:17
【總結(jié)】增函數(shù),減函數(shù)的定義:設(shè)函數(shù)f(x)的定義域為I如果對于屬于定義域I內(nèi)某個區(qū)間上的任意兩個自變量的值x,x,當xx時,都有f(x)f(x),那么就說f(x)在這個區(qū)間上是增函數(shù).111222如果對于屬于定義域I內(nèi)某個區(qū)間上的任意兩個自變量的值x,x,當x
2025-10-10 11:54