【總結(jié)】專業(yè)整理分享高中數(shù)學(xué)橢圓題型歸納 一.橢圓の標(biāo)準(zhǔn)方程及定義1.已知橢圓+=1上一點(diǎn)P到橢圓の一個(gè)焦點(diǎn)の距離為3,則點(diǎn)P到另一個(gè)焦點(diǎn)の距離為( ?。〢.2 B.3 C.5 D.72、已知橢圓の標(biāo)準(zhǔn)方程為,并且焦距為6,則實(shí)數(shù)mの值為 .3.求滿足下列條件の橢圓の標(biāo)準(zhǔn)
2025-04-04 05:13
【總結(jié)】生命是永恒不斷的創(chuàng)造,因?yàn)樵谒鼉?nèi)部蘊(yùn)含著過(guò)剩的精力,它不斷流溢,越出時(shí)間和空間的界限,它不停地追求,以形形色色的自我表現(xiàn)的形式表現(xiàn)出來(lái)。--泰戈?duì)枌?dǎo)數(shù)題型分析及解題方法一、考試內(nèi)容導(dǎo)數(shù)的概念,導(dǎo)數(shù)的幾何意義,幾種常見函數(shù)的導(dǎo)數(shù);兩個(gè)函數(shù)的和、差、基本導(dǎo)數(shù)公式,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,函數(shù)的最大值和最小值。二、熱點(diǎn)
2025-01-08 19:29
【總結(jié)】高考文科數(shù)學(xué)導(dǎo)數(shù)專題復(fù)習(xí)第1講 變化率與導(dǎo)數(shù)、導(dǎo)數(shù)的計(jì)算知識(shí)梳理(1)函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)f′(x0)或y′|x=x0,即f′(x0)=.(2)函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=為f(x)的導(dǎo)函數(shù).=f(x)在點(diǎn)x0處的導(dǎo)數(shù)的幾何意義,就是曲線y=f(x)在點(diǎn)P(x0,f(x0))處的切線的斜率,過(guò)點(diǎn)P的切線方程為y-y0=f′(x0)(x-x0).
2025-04-17 13:17
【總結(jié)】一、函數(shù)1、求定義域(使函數(shù)有意義)分母0偶次根號(hào)0對(duì)數(shù)x0,a0且a1三角形中060,最小角602、求值域判別式法0不等式法
2025-03-23 12:50
【總結(jié)】牛頓第二定律(1)已知受力情況求運(yùn)動(dòng)情況根據(jù)牛頓第二定律,已知物體的受力情況,可以求出物體運(yùn)動(dòng)的加速度;再根據(jù)物體的初始條件(初位置和初速度),應(yīng)用運(yùn)動(dòng)學(xué)公式,求出物體的運(yùn)動(dòng)情況,即求出物體在任意時(shí)刻的速度、位置,也就是求出了物體的運(yùn)動(dòng)情況.可用程序圖表示如下:、大小可調(diào)節(jié)的風(fēng)力.現(xiàn)將一套有一小球的細(xì)直桿放入風(fēng)洞實(shí)驗(yàn)室.小球孔徑略大于細(xì)桿直徑,小球
2025-04-19 05:43
【總結(jié)】A級(jí) 課時(shí)對(duì)點(diǎn)練(時(shí)間:40分鐘 滿分:70分)一、填空題(每小題5分,共40分)1.函數(shù)f(x)=(x-3)ex的單調(diào)遞增區(qū)間是________.解析:f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex,令f′(x)0,解得x2.答案:(2,+∞)2.已知函數(shù)f(x)=-(4m-1)x2+(15m2-2m-7)x+2在實(shí)數(shù)集R
2025-08-21 16:19
【總結(jié)】高考題選講導(dǎo)數(shù)是中學(xué)數(shù)學(xué)的新增內(nèi)容,是高等數(shù)學(xué)的基礎(chǔ)內(nèi)容,它在中學(xué)數(shù)學(xué)教材中的出現(xiàn),使中學(xué)數(shù)學(xué)與大學(xué)數(shù)學(xué)之間又多了一個(gè)無(wú)可爭(zhēng)辯的銜接點(diǎn).今后的高考對(duì)這部分內(nèi)容的考查將仍然會(huì)以導(dǎo)數(shù)的應(yīng)用題為主,如利用導(dǎo)數(shù)處理函數(shù)的極值、最值和單調(diào)性問(wèn)題及曲線的問(wèn)題等.考題不難,側(cè)重知識(shí)之意,這也是命題者為使這部分內(nèi)容在中學(xué)占據(jù)
2024-11-12 16:07
【總結(jié)】高中數(shù)學(xué)選修2----2知識(shí)點(diǎn)第一章導(dǎo)數(shù)及其應(yīng)用一.導(dǎo)數(shù)概念的引入1.導(dǎo)數(shù)的物理意義:瞬時(shí)速率。一般的,函數(shù)在處的瞬時(shí)變化率是,我們稱它為函數(shù)在處的導(dǎo)數(shù),記作或,即=2.導(dǎo)數(shù)的幾何意義:,我們可以看出當(dāng)點(diǎn)趨近于時(shí),直線與曲線相切。容易知道,割線的斜率是,當(dāng)點(diǎn)趨近于時(shí),函數(shù)在處的導(dǎo)數(shù)就是切線PT的斜率k,即3.導(dǎo)函數(shù):當(dāng)x變化時(shí),便是x的一個(gè)函數(shù),我們
2025-08-05 19:28
【總結(jié)】分享智慧泉源智愛學(xué)習(xí)傳揚(yáng)愛心喜樂(lè)導(dǎo)數(shù)答疑1.本章的學(xué)習(xí)目標(biāo)是什么?(1)掌握導(dǎo)數(shù)的定義,靈活運(yùn)用導(dǎo)數(shù)的定義計(jì)算函數(shù)在某一點(diǎn)的導(dǎo)數(shù).(2)掌握函數(shù)在某點(diǎn)的可導(dǎo)性與連續(xù)性的關(guān)系,即函數(shù)在某點(diǎn)可導(dǎo)必連續(xù),連續(xù)不一定可導(dǎo),不連續(xù)一定不可導(dǎo).(3)掌握求導(dǎo)法則,尤其是復(fù)合函數(shù)的求導(dǎo)法則;能熟練地應(yīng)用求
2025-08-11 12:25
【總結(jié)】 2015年數(shù)學(xué)高考導(dǎo)數(shù)壓軸題預(yù)測(cè)精練.(1)若在上是增函數(shù),求得取值范圍;(2)在(1)的結(jié)論下,設(shè),,求函數(shù)的最小值.,直線都不是的切線.(I)求的取值范圍;(II)求證在上至少存在一個(gè),使得成立..(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;(Ⅱ)設(shè)函數(shù)在上是增函數(shù),且對(duì)于內(nèi)的任意實(shí)數(shù),當(dāng)為偶數(shù)時(shí),恒有成立,求實(shí)數(shù)的取值范圍;(x)=x-ln(x+a).
2025-06-07 20:08
【總結(jié)】導(dǎo)數(shù)題型總結(jié)(解析版)體型一:關(guān)于二次函數(shù)的不等式恒成立的主要解法:1、分離變量;2變更主元;3根分布;4判別式法5、二次函數(shù)區(qū)間最值求法:(1)對(duì)稱軸(重視單調(diào)區(qū)間)與定義域的關(guān)系(2)端點(diǎn)處和頂點(diǎn)是最值所在其次,分析每種題型的本質(zhì),你會(huì)發(fā)現(xiàn)大部分都在解決“不等式恒成立問(wèn)題”以及“充分應(yīng)用數(shù)形
2024-10-27 10:44
【總結(jié)】1.函數(shù)的單調(diào)性(1)利用導(dǎo)數(shù)的符號(hào)判斷函數(shù)的增減性注意:在某個(gè)區(qū)間內(nèi),f39。(x)>0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時(shí)f39。(x)=0。也就是說(shuō),如果已知f(x)為增函數(shù),解題時(shí)就必須寫f39。(x)≥0。(2)求函數(shù)單調(diào)區(qū)間的步驟①確定f(x)的定義域;
2024-12-17 15:20
【總結(jié)】導(dǎo)數(shù)常見題型熱點(diǎn)一導(dǎo)數(shù)的幾何意義1、若'0()3fx??,則000()(3)limhfxhfxhh?????()A新疆源頭學(xué)子小屋特級(jí)教師王新敞htp:@:/3?B新疆源頭學(xué)子小屋特級(jí)教師王新敞htp:@:/6?C新疆源
2025-01-11 01:34
【總結(jié)】高中數(shù)學(xué)輔導(dǎo)網(wǎng)京翰教育中心高考數(shù)學(xué)解答題專題攻略函數(shù)與導(dǎo)數(shù)一、08高考真題精典回顧:1.(全國(guó)一19).(本小題滿分12分)已知函數(shù)32()1fxxaxx????,a?R.(Ⅰ)討論函數(shù)()fx的單調(diào)區(qū)間;(Ⅱ)設(shè)函數(shù)()fx在區(qū)間2133????????,內(nèi)是減函數(shù),求a的取值
2025-01-09 16:36
【總結(jié)】高考數(shù)學(xué)數(shù)列題型專題匯總一、選擇題1、已知無(wú)窮等比數(shù)列的公比為,前n項(xiàng)和為,,使得恒成立的是()(A)(B)(C)(D)【答案】B2、已知等差數(shù)列前9項(xiàng)的和為27,,則(A)100(B)99(C)98(D)97【答案】C3、定義“規(guī)范01數(shù)列”{an}如下:{
2025-08-05 18:39