【摘要】高考題選講導(dǎo)數(shù)是中學(xué)數(shù)學(xué)的新增內(nèi)容,是高等數(shù)學(xué)的基礎(chǔ)內(nèi)容,它在中學(xué)數(shù)學(xué)教材中的出現(xiàn),使中學(xué)數(shù)學(xué)與大學(xué)數(shù)學(xué)之間又多了一個(gè)無可爭辯的銜接點(diǎn).今后的高考對這部分內(nèi)容的考查將仍然會(huì)以導(dǎo)數(shù)的應(yīng)用題為主,如利用導(dǎo)數(shù)處理函數(shù)的極值、最值和單調(diào)性問題及曲線的問題等.考題不難,側(cè)重知識(shí)之意,這也是命題者為使這部分內(nèi)容在中學(xué)占據(jù)
2024-11-12 16:07
【摘要】高中數(shù)學(xué)選修2----2知識(shí)點(diǎn)第一章導(dǎo)數(shù)及其應(yīng)用一.導(dǎo)數(shù)概念的引入1.導(dǎo)數(shù)的物理意義:瞬時(shí)速率。一般的,函數(shù)在處的瞬時(shí)變化率是,我們稱它為函數(shù)在處的導(dǎo)數(shù),記作或,即=2.導(dǎo)數(shù)的幾何意義:,我們可以看出當(dāng)點(diǎn)趨近于時(shí),直線與曲線相切。容易知道,割線的斜率是,當(dāng)點(diǎn)趨近于時(shí),函數(shù)在處的導(dǎo)數(shù)就是切線PT的斜率k,即3.導(dǎo)函數(shù):當(dāng)x變化時(shí),便是x的一個(gè)函數(shù),我們
2025-08-05 19:28
【摘要】分享智慧泉源智愛學(xué)習(xí)傳揚(yáng)愛心喜樂導(dǎo)數(shù)答疑1.本章的學(xué)習(xí)目標(biāo)是什么?(1)掌握導(dǎo)數(shù)的定義,靈活運(yùn)用導(dǎo)數(shù)的定義計(jì)算函數(shù)在某一點(diǎn)的導(dǎo)數(shù).(2)掌握函數(shù)在某點(diǎn)的可導(dǎo)性與連續(xù)性的關(guān)系,即函數(shù)在某點(diǎn)可導(dǎo)必連續(xù),連續(xù)不一定可導(dǎo),不連續(xù)一定不可導(dǎo).(3)掌握求導(dǎo)法則,尤其是復(fù)合函數(shù)的求導(dǎo)法則;能熟練地應(yīng)用求
2025-08-11 12:25
【摘要】 2015年數(shù)學(xué)高考導(dǎo)數(shù)壓軸題預(yù)測精練.(1)若在上是增函數(shù),求得取值范圍;(2)在(1)的結(jié)論下,設(shè),,求函數(shù)的最小值.,直線都不是的切線.(I)求的取值范圍;(II)求證在上至少存在一個(gè),使得成立..(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;(Ⅱ)設(shè)函數(shù)在上是增函數(shù),且對于內(nèi)的任意實(shí)數(shù),當(dāng)為偶數(shù)時(shí),恒有成立,求實(shí)數(shù)的取值范圍;(x)=x-ln(x+a).
2025-06-07 20:08
【摘要】導(dǎo)數(shù)題型總結(jié)(解析版)體型一:關(guān)于二次函數(shù)的不等式恒成立的主要解法:1、分離變量;2變更主元;3根分布;4判別式法5、二次函數(shù)區(qū)間最值求法:(1)對稱軸(重視單調(diào)區(qū)間)與定義域的關(guān)系(2)端點(diǎn)處和頂點(diǎn)是最值所在其次,分析每種題型的本質(zhì),你會(huì)發(fā)現(xiàn)大部分都在解決“不等式恒成立問題”以及“充分應(yīng)用數(shù)形
2024-10-27 10:44
【摘要】1.函數(shù)的單調(diào)性(1)利用導(dǎo)數(shù)的符號判斷函數(shù)的增減性注意:在某個(gè)區(qū)間內(nèi),f39。(x)>0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時(shí)f39。(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時(shí)就必須寫f39。(x)≥0。(2)求函數(shù)單調(diào)區(qū)間的步驟①確定f(x)的定義域;
2024-12-17 15:20
【摘要】導(dǎo)數(shù)常見題型熱點(diǎn)一導(dǎo)數(shù)的幾何意義1、若'0()3fx??,則000()(3)limhfxhfxhh?????()A新疆源頭學(xué)子小屋特級教師王新敞htp:@:/3?B新疆源頭學(xué)子小屋特級教師王新敞htp:@:/6?C新疆源
2025-01-11 01:34
【摘要】高中數(shù)學(xué)輔導(dǎo)網(wǎng)京翰教育中心高考數(shù)學(xué)解答題專題攻略函數(shù)與導(dǎo)數(shù)一、08高考真題精典回顧:1.(全國一19).(本小題滿分12分)已知函數(shù)32()1fxxaxx????,a?R.(Ⅰ)討論函數(shù)()fx的單調(diào)區(qū)間;(Ⅱ)設(shè)函數(shù)()fx在區(qū)間2133????????,內(nèi)是減函數(shù),求a的取值
2025-01-09 16:36
【摘要】高考數(shù)學(xué)數(shù)列題型專題匯總一、選擇題1、已知無窮等比數(shù)列的公比為,前n項(xiàng)和為,,使得恒成立的是()(A)(B)(C)(D)【答案】B2、已知等差數(shù)列前9項(xiàng)的和為27,,則(A)100(B)99(C)98(D)97【答案】C3、定義“規(guī)范01數(shù)列”{an}如下:{
2025-08-05 18:39
【摘要】導(dǎo)數(shù)的應(yīng)用1.函數(shù)的單調(diào)性 (1)利用導(dǎo)數(shù)的符號判斷函數(shù)的增減性 注意:在某個(gè)區(qū)間內(nèi),f'(x)>0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時(shí)f'(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時(shí)就必須寫f'(x)≥0。(2)求函數(shù)單調(diào)區(qū)間的步驟?、俅_定f(x)的定義域;?、谇髮?dǎo)數(shù);?、塾?/span>
2025-08-08 20:22
【摘要】導(dǎo)數(shù)各種題型方法總結(jié)請同學(xué)們高度重視:首先,關(guān)于二次函數(shù)的不等式恒成立的主要解法:1、分離變量;2變更主元;3根分布;4判別式法5、二次函數(shù)區(qū)間最值求法:(1)對稱軸(重視單調(diào)區(qū)間)與定義域的關(guān)系(2)端點(diǎn)處和頂點(diǎn)是最值所在其次,分析每種題型的本質(zhì),你會(huì)發(fā)現(xiàn)大部分都在解決“不等式恒成立問題”以及“充分應(yīng)用數(shù)形結(jié)合思想”,創(chuàng)建不等關(guān)系求出取值范圍
2025-05-31 12:10
【摘要】高中數(shù)學(xué)精講精練第五章數(shù)列【知識(shí)圖解】【方法點(diǎn)撥】1.學(xué)會(huì)從特殊到一般的觀察、分析、思考,學(xué)會(huì)歸納、猜想、驗(yàn)證.2.強(qiáng)化基本量思想,并在確定基本量時(shí)注重設(shè)變量的技巧與解方程組的技巧.3.在重點(diǎn)掌握等差、等比數(shù)列的通項(xiàng)公式、求和公式、中項(xiàng)等基礎(chǔ)知識(shí)的同時(shí),會(huì)針對可化為等差(比)數(shù)
2024-11-14 05:05
【摘要】導(dǎo)數(shù)主要內(nèi)容導(dǎo)數(shù)的背影.導(dǎo)數(shù)的概念.多項(xiàng)式函數(shù)的導(dǎo)數(shù).利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值.函數(shù)的最大值和最小值.考試要求:(1)了解導(dǎo)數(shù)概念的某些實(shí)際背景.(2)理解導(dǎo)數(shù)的幾何意義.(3)掌握函數(shù),y=c(c為常數(shù))、y=xn(n∈N+)的導(dǎo)數(shù)公式,會(huì)求多項(xiàng)式函數(shù)的導(dǎo)數(shù).(4)理解極大值、極小值、最大值、最小值的概念,并會(huì)用導(dǎo)數(shù)求多項(xiàng)式函數(shù)的單調(diào)區(qū)間、極大值、極小值及閉區(qū)間上的最大
2025-04-04 05:08
【摘要】高中數(shù)學(xué)精講精練第二章函數(shù)A【知識(shí)導(dǎo)讀】【方法點(diǎn)撥】函數(shù)是中學(xué)數(shù)學(xué)中最重要,最基礎(chǔ)的內(nèi)容之一,是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ).高中函數(shù)以具體的冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù)和三角函數(shù)的概念,性質(zhì)和圖像為主要研究對象,適當(dāng)研究分段函
2025-08-20 20:23
2025-08-20 20:21