【總結(jié)】?材料的固有性質(zhì)、材料的結(jié)構(gòu)與成分、材料的使用性能和材料的合成與加工構(gòu)成材料研究的四大要素。?任何一種材料的宏觀性能或行為,都是由其微觀組織結(jié)構(gòu)所決定的。第二章電子顯微分析緒論?現(xiàn)代材料科學(xué)的發(fā)展在很大程度上依賴于對材料性能和成分結(jié)構(gòu)及微觀組織關(guān)系的理解;對材料在微觀層次上的表征技術(shù),構(gòu)成了材料科學(xué)的一個(gè)重要組成部分
2025-03-22 05:59
【總結(jié)】第八章微分方程與差分方程簡介微分方程的基本概念可分離變量的一階微分方程一階線性微分方程可降階的高階微分方程二階常系數(shù)線性微分方程微分方程應(yīng)用實(shí)例退出第八章微分方程與差分方程簡介我們知道,函數(shù)是研究客觀事物運(yùn)動規(guī)律的重要工具,找出函數(shù)關(guān)
2024-11-03 21:15
【總結(jié)】1第四節(jié)積分和微分電路第四節(jié)積分和微分電路積分電路微分電路下頁總目錄2第四節(jié)積分和微分電路電容伏安特性+-ARuCR′uOuIi1iCC+-基本積分電路要求:R′=RC1uc=—∫
2025-05-02 12:05
【總結(jié)】第十四章其他顯微分析方法【教學(xué)內(nèi)容】【重點(diǎn)掌握內(nèi)容】【教學(xué)難點(diǎn)】一.離子探針顯微分析
2025-05-06 06:31
【總結(jié)】河海大學(xué)理學(xué)院《高等數(shù)學(xué)》高等數(shù)學(xué)(下)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》第七章常微分方程高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》第四節(jié)高階線性微分方程河海大學(xué)理學(xué)院《高等數(shù)學(xué)》一、概念的引入例:設(shè)有一彈簧下掛一重物,如果使物體具有一個(gè)初始速度00?v,物體
2025-05-07 12:10
【總結(jié)】如果在方程式0),,(?zyxF中,2),(Ryx????時(shí),相應(yīng)地總有滿足該方程的唯一的z值存在,則稱該方程在?內(nèi)確定隱函數(shù).),(yxfz?注意,隱函數(shù)不一定都能顯化.隱函數(shù)(二元)的概念第如果在方程式0),(?uXF中,nRX????時(shí),相
2025-04-28 23:03
【總結(jié)】§常系數(shù)線性微分方程的解法-對于一般的線性微分方程沒有普遍的解法基本點(diǎn)v常系數(shù)線性微分方程及可化為這一類型的方程的解法-只須解一個(gè)代數(shù)方程。v某些特殊的非齊次微分方程也可通過代數(shù)運(yùn)算和微分運(yùn)算求得它的通解。掌握:v特征方程與特征根,及求常系數(shù)線性方程的通解v待定系數(shù)法與拉普拉斯變換法求非齊次線性方程的特解
2025-04-29 01:03
【總結(jié)】1第六章多元函數(shù)微分學(xué)DxyzOM?xyP),(yxfz?2偏導(dǎo)數(shù)與全微分復(fù)合函數(shù)與隱函數(shù)的微分法多元函數(shù)的連續(xù)性隱函數(shù)存在定理第六章多元函數(shù)微分學(xué)多元函數(shù)多元函數(shù)的極限方向?qū)?shù)與梯度多元函數(shù)的微分中值定理與泰勒公式極值問題3第一節(jié)、
2025-02-21 16:07
【總結(jié)】1第十四章其它顯微分析方法簡介?本章簡要介紹幾種表面分析儀器和技術(shù):(1)離子探針分析儀(IMA)或二次離子質(zhì)譜儀(SIMS);(2)低能電子衍射(LEED);(3)俄歇電子能譜儀(AES);(4)場離子顯微鏡(FIM)和原子探針(AtomProbe);(5)X射線光電子能譜儀(XPS);
2025-05-06 06:37
【總結(jié)】Runge-Kutta積分方法所以得到:是精確的,中的平均速度。設(shè)是動點(diǎn)在其中為:,一般的解法可以表示對?????????????????????)(!3)(2)()()()(),(),().,(),(32111nnnnnnnnnnnnnnntYhtYhtYhtYhtYtYYttY
2025-05-05 18:22
【總結(jié)】1第九章多元函數(shù)微分學(xué)(下)21、設(shè)空間曲線的方程)1()()()(????????tztytx???ozyx(1)式中的三個(gè)函數(shù)均可導(dǎo).第六節(jié)偏導(dǎo)數(shù)在幾何上的應(yīng)用M?.),,(0000tttzzyyxxM
2025-05-03 22:04
【總結(jié)】第七章電子顯微分析樣品入射電子Auger電子陰極發(fā)光背散射電子二次電子X射線透射電子1.透射電鏡的構(gòu)造2.透射電鏡的主要性能指標(biāo)3.透射電鏡的襯度形成原理4.透射電鏡研究用高分子樣品制備方法3.透射電鏡在高分子研究中的應(yīng)用Part1透
2025-05-12 12:34
【總結(jié)】一、偏導(dǎo)數(shù)的概念二、高階偏導(dǎo)數(shù)三、可微與偏導(dǎo)數(shù)的關(guān)系*多元函數(shù)的偏導(dǎo)數(shù)和全微分四、全微分在二元函數(shù)z=f(x,y)中,有兩個(gè)自變量x,y,但若固定其中一個(gè)自變量,比如,令y=y0,而讓x變化.則z成為一元函數(shù)z=f(x,y0),我們可用討論一元函數(shù)的方法來討論它
2025-08-04 18:32
【總結(jié)】二、可微的條件一、全微分的概念多元函數(shù)的全微分第三節(jié)第八章函數(shù)的微分一元函數(shù)y=f(x)的增量:)()(xfxxfy?????xxfy???)(d(當(dāng)一元函數(shù)y=f(x)可導(dǎo)時(shí))二元函數(shù)z=f(x,y):),(),(yxfyxxfzx?????(當(dāng)二元函數(shù)
2025-01-19 14:35
【總結(jié)】《偏微分方程》第3章波動方程《偏微分方程》第3章波動方程《偏微分方程》第3章波動方程分析可得上述初值問題的形式解是:稱此式為d’Alembert(達(dá)朗貝爾)公式11(,)[()()]()22xatxatuxtxatxatydya???
2025-02-21 16:13