【總結(jié)】一、平面及其方程二、直線及其方程三、小結(jié)思考題第四節(jié)平面與直線一、平面(plane)及其方程(equation)xyzo0MM如果一非零向量垂直于一平面,這向量就叫做該平面的法線向量.法線向量的特征:垂直于平面內(nèi)的任一向量.已知},,,{CBAn??),,,(000
2025-08-21 12:41
【總結(jié)】一、夾逼準(zhǔn)則二、單調(diào)有界收斂準(zhǔn)則四、小結(jié)思考題極限存在準(zhǔn)則兩個重要極限第五節(jié)三、連續(xù)復(fù)利連續(xù)復(fù)利一、夾逼準(zhǔn)則準(zhǔn)則Ⅰ如果數(shù)列nnyx,及nz滿足下列條件:,lim,lim)2()3,2,1()1(azaynzxynnnnnnn?????
2025-08-21 12:38
【總結(jié)】一、柱面與旋轉(zhuǎn)曲面二、二次曲面三、小結(jié)思考題第五節(jié)曲面及其方程本節(jié)只對一些常見的曲面,圍繞下面兩個基本問題進(jìn)行討論:(Ⅱ)已知坐標(biāo)間的關(guān)系式,研究曲面形狀.(討論柱面(cylinder)、旋轉(zhuǎn)曲面(rotatingsurface))(討論二次曲面(twicesurface))(Ⅰ)已知曲面作為點的軌
2025-08-11 11:12
【總結(jié)】一、問題的提出二、Pn和Rn的確定四、簡單應(yīng)用五、小結(jié)思考題三、泰勒中值定理第五節(jié)泰勒(Taylor)公式一、問題的提出1.設(shè))(xf在0x處連續(xù),則有2.設(shè))(xf在0x處可導(dǎo),則有例如,當(dāng)x很小時,xex??1,xx??)1ln([???)
【總結(jié)】主要內(nèi)容典型例題第五章不定積分習(xí)題課積分法原函數(shù)選擇u有效方法基本積分表第一換元法第二換元法直接積分法分部積分法不定積分幾種特殊類型函數(shù)的積分一、主要內(nèi)
【總結(jié)】一、和、差、積、商的求導(dǎo)法則二、反函數(shù)的求導(dǎo)法則三、復(fù)合函數(shù)的求導(dǎo)法則第二節(jié)求導(dǎo)法則與基本初等函數(shù)求導(dǎo)公式四、基本求導(dǎo)法則與求導(dǎo)公式五、小結(jié)思考題一、函數(shù)的和、差、積、商的求導(dǎo)法則定理1并且處也可導(dǎo)在點除分母不為零外們的和、差、積、商則它處可導(dǎo)在點如
【總結(jié)】第十節(jié)函數(shù)的極值與最值一、函數(shù)的極值及其求法oxyab)(xfy?1x2x3x4x5x6xoxyoxy0x0x定義使得有則稱為的一個極大值點(或極小值點)極大值點與極小值點統(tǒng)稱為極值點.極大值與極小值統(tǒng)稱為極值.
2025-07-22 11:11
【總結(jié)】第六節(jié)無窮小的比較一、無窮小的比較例如,xxx3lim20?xxxsinlim0?20sinlimxxx?.sin,,,02都是無窮小時當(dāng)xxxx?極限不同,反映了趨向于零的“快慢”程度不同.;32要快得多比xx;sin大致相同與xx,0?,
2025-08-21 12:40
【總結(jié)】一、利用直角坐標(biāo)系計算二重積分二、小結(jié)思考題第二節(jié)二重積分的計算法(1)如果積分區(qū)域為:,bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba一、利用直角坐標(biāo)系(rightanglecoordinatesys
2025-08-21 12:45
【總結(jié)】一、差分方程的簡單經(jīng)濟(jì)應(yīng)用二、小結(jié)第九節(jié)差分方程的簡單經(jīng)濟(jì)應(yīng)用一、差分方程的簡單經(jīng)濟(jì)應(yīng)用差分方程在經(jīng)濟(jì)領(lǐng)域的應(yīng)用十分廣泛,下面從具體的實例體會其應(yīng)用的場合和應(yīng)用的方法.??.01本利和年末的,求,且初始存款額為設(shè)為年利率,年存款總額,為設(shè)存款模型例一:tSrSSSrtStttt???解tttr
【總結(jié)】主要內(nèi)容典型例題習(xí)題課第二章極限(一)極限的概念(二)連續(xù)的概念一、主要內(nèi)容左右極限兩個重要極限求極限的常用方法無窮小的性質(zhì)極限存在的充要條件判定極限存在的準(zhǔn)則無窮小的比較極限的性質(zhì)數(shù)列極限函
2025-08-21 12:39
【總結(jié)】一、空間曲線及其方程二、空間曲線在坐標(biāo)面上的投影三、小結(jié)思考題第六節(jié)空間曲線及其方程一、空間曲線及其方程?????0),,(0),,(zyxGzyxF空間曲線的一般方程曲線上的點都滿足方程,滿足方程的點都在曲線上,不在曲線上的點不能同時滿足兩個方程.xoz
【總結(jié)】第二節(jié)向量及其線性運算一、向量及其幾何表示二、向量的坐標(biāo)表示三、向量的模與方向角四、向量的線性運算五、向量的分向量表示式六、小結(jié)思考題向量(vector):既有大小又有方向的量.向量表示:以1M為起點,2M為終點的有向線段.1M2M??a?21MM一、向量及其幾何表示
2025-08-21 12:44
【總結(jié)】一、全微分二、全微分在近似計算中的應(yīng)用三、小結(jié)思考題第三節(jié)全微分及其應(yīng)用),(),(yxfyxxf???xyxfx??),(),(),(yxfyyxf???yyxfy??),(二元函數(shù)對x和對y的偏微分(partialdifferential)二元函數(shù)對
2025-08-11 16:43
【總結(jié)】一、問題的提出二、二重積分的概念三、二重積分的性質(zhì)四、小結(jié)思考題第一節(jié)二重積分的概念與性質(zhì)柱體(cylindricalbody)體積=底面積×高特點:平頂.曲頂柱體體積=?特點:曲頂(curvedvertexsurface).),(yxfz?D1.曲頂柱體的體積
2025-08-21 12:46