【總結】第二章數(shù)列§等比數(shù)列復習與提問:?1、等差數(shù)列的定義:定義的符號表示:?2、等差數(shù)列的通項公式:?3、等差中項:a,A,b成等差數(shù)列,則A=(a+b)/2an=a1+(n-1)d等差數(shù)列a
2024-11-21 03:13
【總結】《等比數(shù)列》教學設計(共2課時)一、教材分析:1、內容簡析:本節(jié)主要內容是等比數(shù)列的概念及通項公式,它是繼等差數(shù)列后有一個特殊數(shù)列,是研究數(shù)列的重要載體,與實際生活有密切的聯(lián)系,如細胞分裂、銀行貸款問題等都要用等比數(shù)列的知識來解決,在研究過程中體現(xiàn)了由特殊到一般的數(shù)學思想、函數(shù)思想和方程思想,在高考中占有重要地位。2、教學目標確定:從知識結構來看,本節(jié)核
2025-04-17 07:44
【總結】等比數(shù)列的前n項和第一課時::an=amqn-m2.通項公式:an=a1qn-1等比數(shù)列要點整理4.性質:若m、n、p、q∈N*,m+n=p+q,則am·an=ap·a
2024-11-18 12:17
【總結】問題探究????。的通項公式試求數(shù)列,)(滿足:已知數(shù)列 探究nnnnnaanaaaa1211111?????????????。的通項公式),試求數(shù)列(已知,且中,:已知數(shù)列 探究nnnnnaaqqaaaa
2025-03-12 14:53
【總結】等比數(shù)列的前n項和(第2課時)學習目標掌握等比數(shù)列的前n項和公式,能用等比數(shù)列的前n項和公式解決相關問題.通過等比數(shù)列的前n項和公式的推導過程,體會“錯位相減法”以及分類討論的思想方法.通過對等比數(shù)列的學習,發(fā)展數(shù)學應用意識,逐步認識數(shù)學的科學價值、應用價值,發(fā)展數(shù)學的理性思維.合作學習一、設計問題,創(chuàng)設情
2024-12-09 03:41
【總結】【成才之路】2021年春高中數(shù)學第1章數(shù)列3等比數(shù)列第2課時等比數(shù)列的性質同步練習北師大版必修5一、選擇題1.等比數(shù)列中,a5a14=5,則a8·a9·a10·a11=()A.10B.25C.50D.75[答案]B[解析]
2024-12-05 06:36
【總結】【高考調研】2021年高中數(shù)學課時作業(yè)15等比數(shù)列(第1課時)新人教版必修51.(2021·江西)等比數(shù)列x,3x+3,6x+6,…的第四項等于()A.-24B.0C.12D.24答案A解析由題意得:(3x+3)2=x(6x+6),解得x=-3或-x
2024-11-28 01:20
【總結】第一篇:等比數(shù)列第一課時教案 學習目標: 1、理解等比數(shù)列的定義,、、、難點 重點::、新課引入 傳說在古代印度,國王要獎賞國際象棋的發(fā)明者,發(fā)明者說:請在棋盤的第1個格子里放上1顆麥粒,...
2024-10-25 02:29
【總結】第一篇:高二數(shù)學《等差數(shù)列》(2課時)教案(新人教A版必修5) 課題:§ 授課類型:新授課 (第2課時) ●三維目標 知識與技能:明確等差中項的概念;進一步熟練掌握等差數(shù)列的通項公式及推導公...
2024-10-28 20:48
【總結】第一頁,編輯于星期六:點三十四分。,2.5等比數(shù)列的前n項和第一課時等比數(shù)列前n項和公式,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十四分。,第四...
2024-10-22 18:54
【總結】等比數(shù)列及其性質期末復習?????是等比數(shù)列若重要結論:項和公式前推廣:通項公式:為等比數(shù)列、定義:}{.4:.3_________________}{1nnnnnaSnaaa一、知識要點:1nnaa??常數(shù)(2),q
2024-11-09 01:53
【總結】A等比數(shù)列等比數(shù)列×國際象棋起源于印度,關于國際象棋有這樣一個傳說,國王要獎勵國際象棋的發(fā)明者,問他有什么要求,發(fā)明者說:“請在棋盤上的第一個格子上放1粒麥子,第二個格子上放2粒麥子,第三個格子上放4粒麥子,第四個格子上放8粒麥子,依次類推,直到第64個格子放滿為止?!眹蹩犊卮饝怂?/span>
2024-08-14 19:27
【總結】等比數(shù)列的前n項和教學過程推進新課[合作探究]師在對一般形式推導之前,我們先思考一個特殊的簡單情形:1+q+q2+?+qn=?師這個式子更突出表現(xiàn)了等比數(shù)列的特征,請同學們注意觀察生觀察、獨立思考、合作交流、自主探究師若將上式左邊的每一項乘以公比q,就出現(xiàn)了什么樣的結果呢?生q+q2+?+qn
2024-12-08 13:12
【總結】高中數(shù)學必修5期末復習等比數(shù)列1.在等比數(shù)列}{na中,3a和5a是二次方程052???kxx的兩個根,則642aaa的值為()(A)55?(B)55(C)55?(D)252.已知三角形的三邊構成等比數(shù)列,它們的公比為q,則q的取值范
2024-11-30 14:42
【總結】等比數(shù)列的前n項和(第1課時)學習目標掌握等比數(shù)列的前n項和公式及公式證明思路.會用等比數(shù)列的前n項和公式解決一些有關等比數(shù)列的簡單問題.合作學習一、設計問題,創(chuàng)設情境傳說國際象棋的發(fā)明人是印度的大臣西薩·班·達依爾,舍罕王為了表彰大臣的功績,準備對大臣進行獎賞.國王問大臣:“你
2024-12-08 20:21