freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

排列組合經(jīng)典例題-文庫吧

2025-03-10 02:36 本頁面


【正文】 種顏色的服裝,且相鄰兩區(qū)域的顏色不同,不相鄰區(qū)域顏色相同,不相鄰區(qū)域顏色相同與否不受限制,那么不同的著色方法是 種(84) 圖5 圖6 5.將一四棱錐(圖6)的每個頂點染一種顏色,并使同一條棱的兩端點異色,若只有五種顏色可供使用,則不同的染色方法共 種(420) 遞推法例八 一樓梯共10級,如果規(guī)定每次只能跨上一級或兩級,要走上這10級樓梯,共有多少種不同的走法? 分析:設(shè)上n級樓梯的走法為an種,易知a1=1,a2=2,當(dāng)n≥2時,上n級樓梯的走法可分兩類:第一類:是最后一步跨一級,有an1種走法,第二類是最后一步跨兩級,有an2種走法,由加法原理知:an=an1+ an2,據(jù)此,a3=a1+a2=3,a4=a+a2=5,a5=a4+a3=8,a6=13,a7=21,a8=34,a9=55,a10=。 1.四面體的一個頂點位A,從其它頂點與各棱中點取3個點,使它們和點A在同一平面上,不同的取法有 種(3+3=33)(1)從中任取3個點確定一個平面,共能確定多少個平面?(4+43+36C+6+26=29) (2)以這10個點為頂點,共能確定多少格凸棱錐? 三棱錐 C1044C646C443C44=141 四棱錐 644=96 36=18 共有114先選后排法例9 有甲乙丙三項任務(wù),甲需2人承擔(dān),乙丙各需1人承擔(dān),從10人中選派4人承擔(dān)這三項任務(wù),不同的選派方法有( ) 分析:先從10人中選出2人十一.用轉(zhuǎn)換法解排列組合問題例10.某人連續(xù)射擊8次有四次命中,其中有三次連續(xù)命中,按“中”與“不中”報告結(jié)果,不同的結(jié)果有多少種.解 把問題轉(zhuǎn)化為四個相同的黑球與四個相同白球,其中只有三個黑球相鄰的排列問題.=20種個人參加秋游帶10瓶飲料,每人至少帶1瓶,一共有多少鐘不同的帶法.解 把問題轉(zhuǎn)化為5個相同的白球不相鄰地插入已經(jīng)排好的10個相同的黑球之間的9個空隙種的排列問題.=126種例12 從1,2,3,…,1000個自然數(shù)中任取10個不連續(xù)的自然數(shù),有多少種不同的去法.解 把穩(wěn)體轉(zhuǎn)化為10個相同的黑球與990個相同白球,其其中黑球不相鄰的排列問題。 某城市街道呈棋盤形,南北向大街5條,東西向大街4條,一人欲從西南角走到東北角,路程最短的走法有多少種.解 無論怎樣走必須經(jīng)過三橫四縱,因此,把問題轉(zhuǎn)化為3個相同的白球與四個相同的黑球的排列問題.=35(種) 一個樓梯共18個臺階12步登完,可一步登一個臺階也可一步登兩個臺階,一共有多少種不同的走法.解 根據(jù)題意要想12步登完只能6個一步登一個臺階,6個一步登兩個臺階,因此,把問題轉(zhuǎn)化為6個相同的黑球與6個相同的白球的排列問題.=924(種). 求(a+b+c)10的展開式的項數(shù).解 展開使的項為aαbβcγ,且α+β+γ=10,因此,把問題轉(zhuǎn)化為2個相同的黑球與10個相同的白球的排列問題.=66(種) 亞、歐乒乓球?qū)官悾麝牼?名隊員,按事先排好的順序參加擂臺賽,雙方先由1號隊員比賽,負者淘汰,勝者再與負方2號隊員比賽,直到一方全被淘汰為止,另一方獲勝,形成一種比賽過程.那么所有可能出現(xiàn)的比賽過程有多少種?解 設(shè)亞洲隊隊員為a1,a2,…,a5,歐洲隊隊員為b1,b2,…,b5,下標表示事先排列的出場順序,若以依次被淘汰的隊員為順序.比賽過程轉(zhuǎn)化為這10個字母互相穿插的一個排列,最后師勝隊種步被淘汰的隊員和可能未參加參賽的隊員,所以比賽過程可表示為5個相同的白球和5個相同黑球排列問題,比賽過程的總數(shù)為=252(種)十二.轉(zhuǎn)化命題法圓周上共有15個不同的點,過其中任意兩點連一弦,這些弦在圓內(nèi)的交點最多有多少各?分析:因兩弦在圓內(nèi)若有一交點,則該交點對應(yīng)于一個以兩弦的四端點為頂點的圓內(nèi)接四邊形,則問題化為圓周上的15個不同的點能構(gòu)成多少個圓內(nèi)接四邊形,因此這些現(xiàn)在圓內(nèi)的交點最多有=1365(個)十三.概率法一天的課程表要排入語文、數(shù)學(xué)、物理、化學(xué)、英語、體育六節(jié)課,如果數(shù)學(xué)必須排在體育之前,那么該天的課程表有多少種排法?分析:在六節(jié)課的排列總數(shù)中,體育課排在數(shù)學(xué)之前與數(shù)學(xué)課排在體育之前的概率相等,均為,故本例所求的排法種數(shù)就是所有排法的,即A=360種十四.除序法 例19 用1,2,3,4,5,6,7這七個數(shù)字組成沒有重復(fù)數(shù)字的七位數(shù)中,(1)若偶數(shù)2,4,6次序一定,有多少個?(2)若偶數(shù)2,4,6次序一定,奇數(shù)1,3,5,7的次序也一定的有多少個? 解(1)(2)十五.錯位排列例20 同室四人各寫一張賀卡,先集中起來,然后每人從中拿一張別人送出的卡片,則不同的分配方法有 種(9)公式 1) n=4時a4=3(a3+a2)=9種 即三個人有兩種錯排,兩個人有一種錯排.2)=n!(1++…+練習(xí) 有五位客人參加宴會,他們把帽子放在衣帽寄放室內(nèi),宴會結(jié)束后每人戴了一頂帽子回家,回家后,他們的妻子都發(fā)現(xiàn)他們戴了別人的帽子,問5位客人都不戴自己帽子的戴法有多少種?(44) 掌握排列、組合問題的解題策略 (1),特殊元素優(yōu)先安排的策略: (2),合理分類與準確分步的策略; (3)排列、組合混合問題先選后排的策略; (4)正難則反、等價轉(zhuǎn)化的策略; (5)相鄰問題捆綁處理的策略;
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1