freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中學(xué)九級上學(xué)期(上)期末數(shù)學(xué)試卷兩套匯編八附答案及試題解析-文庫吧

2024-12-26 08:39 本頁面


【正文】 的中點, ∴ DE 是 △ ABC 的中位線; ∴ DE∥ BC, BC=2DE;(故 ① 正確) ∴△ ADE∽△ ABC;(故 ② 正確) ∴ ,即 ;(故 ③ 正確) 因此本題的三個結(jié)論都正確,故選 A. 10.如圖,在正方形 ABCD 中, E 位 DC 邊上的點,連結(jié) BE,將 △ BCE 繞點 C 順第 11 頁(共 48 頁) 時針方向旋轉(zhuǎn) 90176。得到 △ DCF,連結(jié) EF,若 ∠ BEC=60176。,則 ∠ EFD 的度數(shù)為( ) A. 15176。 B. 10176。 C. 20176。 D. 25176。 【考點】 旋轉(zhuǎn)的性質(zhì);正方形的性質(zhì). 【分析】 由旋轉(zhuǎn)前后的對應(yīng)角相等可知, ∠ DFC=∠ BEC=60176。;一個特殊三角形 △ECF 為等腰直角三角形,可知 ∠ EFC=45176。,把這兩個角作差即可. 【解答】 解: ∵△ BCE 繞點 C 順時針方向旋轉(zhuǎn) 90176。得到 △ DCF, ∴ CE=CF, ∠ DFC=∠ BEC=60176。, ∠ EFC=45176。, ∴∠ EFD=60176。﹣ 45176。=15176。. 故選: A. 二、填空題(每題 4 分,共 40 分) 11.隨機擲一枚均勻的正方體骰子,骰子停止后朝上的點數(shù)小于 3的概率是 . 【考點】 概率公式. 【分析】 根據(jù)概率的求法,找準兩點: ① 全部情況的總數(shù); ② 符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率. 【解答】 解: ∵ 隨機擲一枚均勻的正方體骰子,骰子停止后朝上的點數(shù)有 1, 2,3, 4, 5, 6 共 6 種, 其中只有 1 和 2 小于 3, ∴ 所求的概率為 = . 故答案為: . 12.已知兩個相似的三角形的面積之比是 16: 9,那么這兩個三角形的周長之比是 4: 3 . 第 12 頁(共 48 頁) 【考點】 相似三角形的性質(zhì). 【分析】 根據(jù)相似三角形面積的比等于相似比的平方求出相似比,根據(jù)相似三角形周長的比等于相似比解答即可. 【解答】 解: ∵ 兩個相似的三角形的面積之比是 16: 9, ∴ 兩個相似的三角形的相似比是 4: 3, ∴ 兩個相似的三角形的周長比是 4: 3, 故答案為: 4: 3. 13.菱形的對角線長分別為 6 和 8,則此菱形的周長為 20 ,面積為 24 . 【考點】 菱形的性質(zhì). 【分析】 由菱形的對角線長分別為 6 和 8,根據(jù)菱形的面積等于對角線積的一半,可求得菱形的面積,由勾股定理可求得 AB 的長,繼而求得周長. 【解答】 解:如圖, AC=6, BD=8, ∵ 四邊形 ABCD 是菱形, ∴ AC⊥ BD, OA= AC=3, OB= BD=4, ∴ AB= =5, ∴ 菱形的周長是: 4AB=4 5=20,面積是: AC?BD= 6 8=24. 故答案為: 20, 24. 14.在反比例函數(shù) 的圖象的每一條曲線上, y 隨著 x 的增大而增大,則 k的取值范圍是 k< 1 . 【考點】 反比例函數(shù)的性質(zhì). 【分析】 根據(jù)反比例函數(shù)的性質(zhì)得到 k﹣ 1< 0,然后解不等式即可. 【解答】 解: ∵ 反比例函數(shù) 的圖象的每一條曲線上, y 隨著 x 的增大而增第 13 頁(共 48 頁) 大, ∴ k﹣ 1< 0, ∴ k< 1. 故答案為 k< 1. 15.如圖,在 △ ABC 中,點 D, E 分別在 AB, AC 邊上, DE∥ BC,若 AD: DB=1:3, AE=3,則 AC= 12 . 【考點】 平行線分線段成比例. 【分析】 根據(jù)平行線分線段成比例,可以求得 AC 的長. 【解答】 解: ∵ DE∥ BC, ∴ , ∵ AD: DB=1: 3, AE=3, ∴ EC=9, ∴ AC=AE+EC=3+9=12, 故答案為: 12 16.已知關(guān)于 x 的方程( k﹣ 1) x2﹣ 2x+1=0 有兩個實數(shù)根,則 k 的取值范圍為 k≤ 2 且 k≠ 1 . 【考點】 根的判別式;一元二次方程的定義. 【分析】 根據(jù)一元二次方程的定義和 △ 的意義得到 k﹣ 1≠ 0,即 k≠ 1,且 △≥ 0,即(﹣ 2) 2﹣ 4( k﹣ 1) ≥ 0,然后求出這兩個不等式解的公共部分即為 k 的取值范圍. 【解答】 解: ∵ 關(guān)于 x 的方程( k﹣ 1) x2﹣ 2x+1=0 有兩個實數(shù)根, ∴ k﹣ 1≠ 0,即 k≠ 1,且 △≥ 0,即(﹣ 2) 2﹣ 4( k﹣ 1) ≥ 0, 解得 k≤ 2, 第 14 頁(共 48 頁) ∴ k 的取值范圍為 k≤ 2 且 k≠ 1. 故答案為: k≤ 2 且 k≠ 1. 17.如圖,在 △ ABC 中,添加一個條件: ∠ ABP=∠ C 或 ∠ APB=∠ ABC 或AB2=AP?AC ,使 △ ABP∽△ ACB. 【考點】 相似三角形的判定. 【分析】 相似三角形的判定,對應(yīng)角相等,對應(yīng)邊成比例,題中 ∠ A 為公共角,再有一對應(yīng)角相等即可. 【解答】 解:在 △ ABP 和 △ ACB 中, ∵∠ A=∠ A, ∴ 當(dāng) ∠ ABP=∠ C 或 ∠ APB=∠ ABC 或 = 即 AB2=AP?AC 時, △ ABP∽△ ACB, 故答案為: ∠ ABP=∠ C 或 ∠ APB=∠ ABC 或 AB2=AP?AC. 18.如圖,點 M 是反比例函數(shù) y= ( a≠ 0)的圖象上一點,過 M 點作 x 軸、 y軸的平行線,若 S 陰影 =5,則此反比例函數(shù)解析式為 y=﹣ . 【考點】 反比例函數(shù)系數(shù) k 的幾何意義. 【分析】 根據(jù)反比例函數(shù) k 的幾何意義可得 |a|=5,再根據(jù)圖象在二、四象限可確定 a=﹣ 5,進而得到解析式. 【解答】 解: ∵ S 陰影 =5, ∴ |a|=5, 第 15 頁(共 48 頁) ∵ 圖象在二、四象限, ∴ a< 0, ∴ a=﹣ 5, ∴ 反比例函數(shù)解析式為 y=﹣ , 故答案為: y=﹣ . 19.如圖,矩形 ABCD 的對角線 AC 和 BD 相交于點 O,過點 O 的直線分別交 AD和 BC 于點 E、 F, AB=2, BC=3,則圖中陰影部分的面積為 3 . 【考點】 矩形的性質(zhì). 【分析】 根據(jù)矩形是中心對稱圖形尋找思路: △ AOE≌△ COF,圖中陰影部分的面積就是 △ BCD 的面積. 【解答】 解: ∵ 四邊形 ABCD 是矩形, ∴ OA=OC, ∠ AEO=∠ CFO; 又 ∵∠ AOE=∠ COF, 在 △ AOE 和 △ COF 中, , ∴△ AOE≌△ COF, ∴ S△ AOE=S△ COF, ∴ 圖中陰影部分的面積就是 △ BCD 的面積. S△ BCD= BC CD= 2 3=3. 故答案為: 3. 20.觀察下列各式: 13=12 第 16 頁(共 48 頁) 13+23=32 13+23+33=62 13+23+33+43=102 … 猜想 13+23+33+…+103= 552 . 【考點】 規(guī)律型:數(shù)字的變化類. 【分析】 13=12 13+23=( 1+2) 2=32 13+23+33=( 1+2+3) 2=62 13+23+33+43=( 1+2+3+4) 2=102 13+23+33+…+103=( 1+2+3…+10) 2=552. 【解答】 解:根據(jù)數(shù)據(jù)可分析出規(guī)律為從 1 開始,連續(xù) n 個數(shù)的立方和 =( 1+2+…+n)2 所以 13+23+33+…+103=( 1+2+3…+10) 2=552. 三、解答題(本大題 8 小題,共 80 分) 21.解方程: ( 1) x( x﹣ 2) =3( x﹣ 2) ( 2) 3x2﹣ 2x﹣ 1=0. 【考點】 解一元二次方程 因式分解法. 【分析】 ( 1)先移項得到 x( x﹣ 2)﹣ 3( x﹣ 2) =0,然后利用因式分解法解方程; ( 2)利用因式分解法解方程. 【解答】 解:( 1) x( x﹣ 2)﹣ 3( x﹣ 2) =0, ( x﹣ 2)( x﹣ 3) =0, x﹣ 2=0 或 x﹣ 3=0, 所以 x1=2, x2=3; ( 2)( 3x﹣ 1)( x+1) =0, 3x﹣ 1=0 或 x+1=0, 所以 x1= , x2=﹣ 1. 第 17 頁(共 48 頁) 22.已知,如圖, AB 和 DE 是直立在地面上的兩根立柱, AB=5m,某一時刻 AB在陽光下的投影 BC=3m. ( 1)請你在圖中畫出此時 DE 在陽光下的投影; ( 2)在測量 AB 的投影時,同時測量出 DE 在陽光下的投影長為 6m,請你計算DE 的長. 【考點】 平行投影;相似三角形的性質(zhì);相似三角形的判定. 【分析】 ( 1)根據(jù)投影的定義,作出投影即可; ( 2)根據(jù)在同一時刻,不同物體的物高和影長成比例;構(gòu)造比例關(guān)系 .計算可得 DE=10( m). 【解答】 解:( 1)連接 AC,過點 D 作 DF∥ AC,交直線 BC 于點 F,線段 EF 即為DE 的投影. ( 2) ∵ AC∥ DF, ∴∠ ACB=∠ DFE. ∵∠ ABC=∠ DEF=90176。 ∴△ ABC∽△ DEF. ∴ , ∴ ∴ DE=10( m). 說明:畫圖時,不要求學(xué)生做文字說明,只要畫出兩條平行線 AC 和 DF,再連接EF 即可. 第 18 頁(共 48 頁) 23.已知:如圖中, AD 是 ∠ A 的角平分線, DE∥ AC, DF∥ AB.求證:四邊形 AEDF是菱形. 【考點】 菱形的判定. 【分析】 由已知易得四邊形 AEDF 是平行四邊形,由角平分線和平行線的定義可得 ∠ FAD=∠ FDA,根據(jù) AF=DF 得到四邊形 AEDF 是菱形. 【解答】 證明: ∵ AD 是 △ ABC 的角平分線, ∴∠ EAD=∠ FAD, ∵ DE∥ AC, DF∥ AB, ∴ 四邊形 AEDF 是平行四邊形, ∠ EAD=∠ ADF, ∴∠ FAD=∠ FDA ∴ AF=DF, ∴ 四邊形 AEDF 是菱形. 24.一個不透明的袋子中裝有大小、質(zhì)地完全相同的 3 只球,球上分別標有 2,3, 5 三個數(shù)字. ( 1)從這個袋子中任意摸一只球,所標數(shù)字是奇數(shù)的概率是 ; ( 2)從這個袋子中任意摸一只球,記下所標數(shù)字,不放回,再從從 這個袋子中任意摸一只球,記下所標數(shù)字.將第一次記下的數(shù)字作為十位數(shù)字,第二次記下的數(shù)字作為個位數(shù)字,組成一個兩位數(shù).求所組成的兩位數(shù)是 5 的倍數(shù)的概率.(請用 “畫樹狀圖 ”或 “列表 ”的方法寫出過程) 第 19 頁(共 48 頁) 【考點】 列表法與樹狀圖法. 【分析】 ( 1)直接根據(jù)概率公式解答即可; ( 2)首先畫出樹狀圖,可以直觀的得到共有 6 種情況,其中是 5 的倍數(shù)的有兩種情況,進而算出概率即可. 【解答】 解:( 1)任意摸一只球,所標數(shù)字是奇數(shù)的概率是: ; ( 2)如圖所示:共有 6 種情況,其中是 5 的倍數(shù)的有 25, 35 兩種情況, 概率為: = . 25.某商場銷售一批名牌襯衫,平均每天可售出 20 件,每件盈利 40 元,為了擴大銷售量,增加利潤,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件襯衫降價 1 元,那么商場平均每天可多售出 2 件
點擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1