freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

淺談小學(xué)數(shù)學(xué)概念教學(xué)(已改無錯(cuò)字)

2024-11-14 21 本頁面
  

【正文】 理這三種思維形式中,概念作為思維的“細(xì)胞”,是判斷和推理的前提。沒有正確的概念,就不可能有正確的判斷和推理,更談不上邏輯思維能力的培養(yǎng)。因此,學(xué)好概念是學(xué)好數(shù)學(xué)最重要的一環(huán)。從小學(xué)數(shù)學(xué)概念教學(xué)的實(shí)際來看,學(xué)生對概念的態(tài)度大體有兩種:一種認(rèn)為基本概念單調(diào)乏味,不重視它,不求甚解,導(dǎo)致對概念的認(rèn)識和理解模糊。另一種是重視基本概念但只是死記硬背,而不能真正透徹理解,這樣必然嚴(yán)重影響學(xué)生對數(shù)學(xué)基礎(chǔ)知識和基本技能的掌握和運(yùn)用。只有真正掌握了數(shù)學(xué)中的基本概念,學(xué)生才能把握數(shù)學(xué)的知識系統(tǒng),才能正確、合理、迅速地進(jìn)行運(yùn)算、論證和空間想象。從一定意義上說,數(shù)學(xué)水平的高低,關(guān)鍵是在對數(shù)學(xué)概念的理解、應(yīng)用和轉(zhuǎn)化等方面的差異。因此,抓好概念教學(xué)是培養(yǎng)數(shù)學(xué)能力的根本一環(huán)。影響小學(xué)數(shù)學(xué)概念教學(xué)的因素很多。一方面,在教學(xué)中教師對概念教學(xué)的重視程度是影響教學(xué)的主要外部因素。在概念教學(xué)中,教師往往刻意關(guān)注概念表述的“精確”,而忽視其實(shí)質(zhì)和實(shí)際的背景。強(qiáng)調(diào)定義、定理的字斟句酌推敲,而忽視其發(fā)生、發(fā)展的過程和反映的基本事實(shí)和現(xiàn)象。過分追求邏輯嚴(yán)謹(jǐn)和體系的形式化,而忽視學(xué)生在一定年齡階段的思維所應(yīng)該具有的形象性。另一方面,《小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)》中指出,小學(xué)數(shù)學(xué)基礎(chǔ)知識中的概念主要包括:數(shù)的概念、集合圖形的概念、四則運(yùn)算的概念、計(jì)量的概念、比和比例的概念、式的概念等。這些概念具有較強(qiáng)的抽象性、概括性等特征,本身也給概念教學(xué)帶來了難度。就小學(xué)生個(gè)體而言,由于年齡較小,缺乏足夠的感性材料和實(shí)際生活經(jīng)驗(yàn),抽象邏輯思維能力、語言理解能力等較差,這些因素都會(huì)影響小學(xué)數(shù)學(xué)概念教學(xué)的成效。小學(xué)生學(xué)習(xí)數(shù)學(xué)概念,往往是利用概念的同化和概念的形成這兩種方式。概念的同化需要學(xué)生從已有的認(rèn)知結(jié)構(gòu)中,檢索出與新概念有聯(lián)系的概念,通過相互作用提示新概念的本質(zhì)屬性。學(xué)生個(gè)體之間的智力是有差別的,即便是同一年齡或同一年級的學(xué)生,由于智力發(fā)展的程度不同,達(dá)到相應(yīng)的學(xué)習(xí)水平的速度也不一樣,其主要原因是學(xué)生的認(rèn)知策略和元認(rèn)知水平的差別。概念的形成主要依靠學(xué)生的直接經(jīng)驗(yàn),從大量的感性材料中進(jìn)行抽象概括,提示概念的本質(zhì)屬性,從而形成概念。小學(xué)數(shù)學(xué)的概念教學(xué)有明顯的認(rèn)知直觀性,需要有具體的經(jīng)驗(yàn)作支持。因此,學(xué)生原有認(rèn)知結(jié)構(gòu)中概念的清晰度和穩(wěn)固程度、原有生活經(jīng)驗(yàn)和得到的感性材料的豐富性,將對概念教學(xué)起著重要作用。學(xué)生的抽象概括能力和語言表達(dá)能力,都是影響概念教學(xué)效果的內(nèi)部因素,值得關(guān)注。在概念的形成過程中,學(xué)生通過觀察客觀事物,發(fā)現(xiàn)事物的各種屬性,然后把本質(zhì)屬性從中抽象出來。在掌握了概念的內(nèi)容后,再把這些本質(zhì)屬性推廣到同類事物中,才能對概念所反映的同類事物有普遍的認(rèn)識,這才算理解了概念。比如,教學(xué)長方形概念時(shí),應(yīng)先讓學(xué)生觀察具有長方形的各種實(shí)物,引導(dǎo)學(xué)生找出他們的邊和角各有什么共同特點(diǎn),然后抽象出圖形,并對長方形的特征作出概括。如果缺乏必要的抽象概括能力,概念的內(nèi)涵和外延就會(huì)出現(xiàn)片面擴(kuò)大或縮小的錯(cuò)誤。學(xué)生的語言表達(dá)能力對數(shù)學(xué)概念教學(xué)也相當(dāng)重要。如果數(shù)學(xué)語言表達(dá)能力差,必然對概念的表述不夠準(zhǔn)確,就會(huì)影響到概念的理解、鞏固和運(yùn)用。比如,“半徑”的準(zhǔn)確定義應(yīng)該是:“連接圓心到圓上任意一點(diǎn)的線段叫做圓的半徑?!比绻麑W(xué)生把它說成是圓心到圓的距離,無疑就會(huì)在實(shí)際運(yùn)用中產(chǎn)生偏差。二、數(shù)學(xué)概念優(yōu)化的策略小學(xué)數(shù)學(xué)概念的教學(xué),一般要經(jīng)過概念的引入、概念的建立、概念的鞏固和概念的深化等環(huán)節(jié)。這是一個(gè)復(fù)雜的思維過程,既是知識的再創(chuàng)造、概念的逐步理解過程,又是改善學(xué)生思維品質(zhì)、發(fā)展學(xué)生思維能力、培養(yǎng)學(xué)生創(chuàng)新意識和創(chuàng)造能力的過程。概念的引入概念的引入是數(shù)學(xué)概念教學(xué)的第一步,直接關(guān)系到學(xué)生對概念的理解和掌握程度。形象直觀地引入。小學(xué)生掌握概念是一個(gè)主動(dòng)的、復(fù)雜的認(rèn)識過程,他們的抽象思維是直接與感性經(jīng)驗(yàn)相聯(lián)系的。因此,首先應(yīng)提供豐富而典型的感性材料,使他們通過直觀形象,逐步抽象、內(nèi)化成概念。形象直觀地引入概念,就是通過小學(xué)生所熟悉的生活實(shí)例以及生動(dòng)形象的比喻,提出問題,引入概念?;蛘卟捎媒叹?、模型、圖表、投影演示及動(dòng)手操作等,增加學(xué)生的感性認(rèn)識,然后逐步抽象,引入概念。在這一過程中,應(yīng)該重視生活實(shí)例在引入概念中的作用。數(shù)學(xué)來自現(xiàn)實(shí)生活,生活中處處有數(shù)學(xué),結(jié)合生活實(shí)際引入概念符合小學(xué)生的心理特點(diǎn)和認(rèn)知規(guī)律。比如,在教學(xué)三角形的特點(diǎn)時(shí),可以讓學(xué)生思考:在實(shí)際生活中哪些地方用到了“三角形”?自行車的三角架、支撐房頂?shù)牧杭?、電線桿上的三角架等,為什么都做成三角架而不做成四邊形呢?通過生活中的實(shí)例,來提示三角形具有穩(wěn)定性的特點(diǎn)。利用學(xué)生熟悉的生活實(shí)際中的一些事物或?qū)嵗?,使其獲得感性認(rèn)識,便于在此基礎(chǔ)上引入概念?,F(xiàn)代心理學(xué)認(rèn)為,實(shí)際操作是兒童智力活動(dòng)的源泉。通過學(xué)生的實(shí)際操作引入概念,可以使抽象的概念具體化。操作活動(dòng),對學(xué)生思維能力的發(fā)展有著極大的推動(dòng)作用。教學(xué)中,可以讓學(xué)生親自動(dòng)手,量一量、分一分、算一算、擺一擺,從中獲得第一手的感性材料,為抽象概括出新概念打下基礎(chǔ)。比如,教學(xué)“圓周率”的概念時(shí),可以讓學(xué)生做幾個(gè)直徑不等的圓,在直尺上滾動(dòng)或用繩子量出圓的周長,算一算周長是直徑的幾倍。讓學(xué)生自己發(fā)現(xiàn)圓的大小雖然不同,但周長總是直徑的3倍多一些。這時(shí)教師引入概念:圓周長是同圓直徑的3倍多,是個(gè)固定的數(shù),稱為“圓周率”。從原有概念的基礎(chǔ)上引入。數(shù)學(xué)概念之間的聯(lián)系十分緊密,因此可以從學(xué)生已有的概念知識基礎(chǔ)上加以引申,直接導(dǎo)出新概念。這樣,既鞏固了舊知識,又學(xué)習(xí)了新概念,強(qiáng)化了新舊知識的內(nèi)在聯(lián)系,能幫助學(xué)生建立系統(tǒng)、完整的概念體系,充分調(diào)動(dòng)學(xué)習(xí)的積極性和主動(dòng)性。比如,在“整除”概念基礎(chǔ)上建立“約數(shù)”、“倍數(shù)”概念。由“約數(shù)”導(dǎo)出“公約數(shù)”、“最大公約數(shù)”。由“倍數(shù)”引出“公倍數(shù)”,再導(dǎo)出“最小公倍數(shù)”。又如,在幾何知識中,可以由長方形的面積導(dǎo)出正方形、平行四邊形、三角形、梯形等面積公式。從計(jì)算方法引入。指通過計(jì)算發(fā)現(xiàn)問題,通過計(jì)算引出概念。有些概念不便運(yùn)用實(shí)例引入,又與已有概念聯(lián)系不大,就可以通過對運(yùn)算的觀察分析,發(fā)現(xiàn)其中蘊(yùn)含的本質(zhì)屬性,達(dá)到引出概念的目的。比如,教學(xué)“倒數(shù)”的認(rèn)識時(shí),可以先給出兩個(gè)數(shù)相乘乘積是1的幾個(gè)算式,讓學(xué)生計(jì)算出結(jié)果,再觀察、分析,從中發(fā)現(xiàn)規(guī)律,引出“倒數(shù)”的定義。概念的建立概念的建立是概念教學(xué)的中心環(huán)節(jié)。感知和經(jīng)驗(yàn)只是入門的導(dǎo)向,對概念本質(zhì)屬性的揭示才能成為判斷的依據(jù)。利用變式。所謂變式,是指提供的事例或材料不斷地變換呈現(xiàn)形式,改變非本質(zhì)屬性,使本質(zhì)屬性“恒在”,借此可以幫助學(xué)生準(zhǔn)確形成概念。感性材料的表現(xiàn)形式對數(shù)學(xué)概念的學(xué)習(xí)和掌握有重要影響,如果給學(xué)生提供的感性材料都是一些“標(biāo)準(zhǔn)”的實(shí)物或圖形,那么學(xué)生在概念的理解上就難免出現(xiàn)片面性。利用變式,可以使學(xué)生透過現(xiàn)象看到本質(zhì),真正掌握概念。利用對比辨析。建立概念時(shí),對一些臨近的、易混淆的數(shù)學(xué)概念,應(yīng)該及時(shí)進(jìn)行對比辨析,弄清它們之間的聯(lián)系和區(qū)別。如最大公約數(shù)和最小公倍數(shù)。整除和除盡。正比例、反比例和不成比例的量等。這樣,既可以鞏固概念,又能使新概念清晰,有助于學(xué)生概念系統(tǒng)的逐步形成。利用反面襯托。反面襯托即舉出概念的反例,可直接舉反例說明,也可從正反兩方面分析,是進(jìn)行概念教學(xué)的有效方法。學(xué)生通過接觸這些與概念相關(guān)的正反例子,能進(jìn)一步加深對概念的理解。多層次、分階段建立概念體系。概念的理解不是一次完成的,要有一個(gè)長期的、反復(fù)的認(rèn)識過程。同樣,一個(gè)完整的概念體系的建立也要多層次、分階段進(jìn)行。比如,在教學(xué)“分?jǐn)?shù)的初步認(rèn)識”時(shí),可以分成三個(gè)層次來教學(xué):第一是突出把一個(gè)分?jǐn)?shù)“平均分”以后“取份”。第二是解決“份數(shù)”與“整體”的關(guān)系。第三是明確單位“1”可以是一個(gè)物體,也可以是一類物體的集合體。通過這樣反復(fù)的概念教學(xué),學(xué)生不但能夠很好地掌握分?jǐn)?shù)的基本概念,而且為繼續(xù)學(xué)習(xí)分?jǐn)?shù)的本質(zhì)屬性打下了良好的基礎(chǔ)。概念的鞏固與深化從認(rèn)識的過程來說,形成概念是從感性認(rèn)識上升到理性認(rèn)識的過程。即從個(gè)別的事例中總結(jié)出一般性的規(guī)律,鞏固概念則是識記概念和保持概念的過程,是加深理解和靈活運(yùn)用概念的過程,即從一般到個(gè)別的過程。小學(xué)生數(shù)學(xué)概念的掌握不是一蹴而就的,必須通過及時(shí)的鞏固來加深對概念的理解。鞏固概念一般采用熟記、應(yīng)用并建立概念系統(tǒng)等方法來進(jìn)行。熟記,就是要求學(xué)生對概念定義在理解的基礎(chǔ)上通過反復(fù)感知、反復(fù)回憶等手段達(dá)到熟練記憶。應(yīng)用,則是指學(xué)生在應(yīng)用概念中,達(dá)到鞏固概念的作用,其主要形式是練習(xí)。比如,教學(xué)“分?jǐn)?shù)乘法的意義”后,讓學(xué)生說說3247。45,53247。4,2247。33247。4等的意義。又如,學(xué)了“圓的認(rèn)識”后,讓學(xué)生判斷圖中哪條線段為圓的半徑,哪條線段為圓的直徑。學(xué)生的認(rèn)識是由淺入深、由具體到抽象的發(fā)展過程,而學(xué)生數(shù)學(xué)知識又是分段進(jìn)行,概念教學(xué)也是分段安排的。因此,概念教學(xué)既要重視概念的階段性,又要注意到概念發(fā)展的連續(xù)性,要有計(jì)劃地發(fā)展概念的含義,按階段發(fā)展學(xué)生的抽象概括能力。通過運(yùn)用,加深學(xué)生對概念的認(rèn)識,使學(xué)生找出概念間的縱向與橫向聯(lián)系,形成系統(tǒng)的認(rèn)識結(jié)構(gòu),達(dá)到深化概念的目的??傊W(xué)數(shù)學(xué)概念教學(xué)的各階段環(huán)環(huán)相扣。引入概念后要緊接著建立概念,建立后要及時(shí)鞏固,鞏固中要加深理解,同時(shí)又要為概念的發(fā)展作準(zhǔn)備。教師在概念教學(xué)中,要結(jié)合概念的特點(diǎn)和學(xué)生的實(shí)際,靈活設(shè)計(jì)不同的環(huán)節(jié),采取多種教學(xué)策略,使學(xué)生在掌握數(shù)學(xué)概念的同時(shí),提高數(shù)學(xué)能力。篇7:小學(xué)數(shù)學(xué)概念四環(huán)節(jié)教學(xué)談小學(xué)數(shù)學(xué)概念四環(huán)節(jié)教學(xué)談小學(xué)數(shù)學(xué)概念一般可以分為三種情況:一是定義型的概念,如約數(shù)、倍數(shù)、分?jǐn)?shù)等。這些概念,教材中有 確切的定義。二是描述型的概念,如直線、小數(shù)等。這些概念,教材中沒有嚴(yán)格的定義,只用語言描述了其基 本特征。三是感知型的概念,這種概念,在小學(xué)階段既沒有下嚴(yán)格的定義,也無法用語言描述,只能用實(shí)物或 圖形讓學(xué)生直觀感知認(rèn)識。如圓的概念,義務(wù)教材第一冊,課本上只畫了一個(gè)圓的圖形,并注明這就是圓。義 務(wù)教材第九冊也沒有給出圓的定義,只是說“圓是平面上的一種曲線圖形”。對于這些概念如何進(jìn)行教學(xué)呢? 一般要經(jīng)過引入、形成、鞏固和發(fā)展四個(gè)環(huán)節(jié)。在每一個(gè)教學(xué)環(huán)節(jié)中,為了達(dá)到一定的教學(xué)目的,教師要根據(jù) 概念的不同情況及學(xué)生的具體實(shí)際,采用相應(yīng)的教學(xué)方法。一、概念的引入。所謂形象直觀地引入概念,就是通過學(xué)生所熟悉的生活事例,以及生動(dòng)形象的比喻,提出問題,引入概念 ;或者采用教具、模型、圖表、幻燈演示及讓學(xué)生動(dòng)手操作等增加學(xué)生的感性認(rèn)識,然后逐步抽象,引入概念 。如,在三年級教學(xué)三角形的特性時(shí),可以讓學(xué)生想想,在實(shí)際生活中你見過哪些地方用到了“三角形”? 根據(jù)學(xué)生的回答,教師提出問題,自行車的三角架,支撐房頂?shù)牧杭?,電線桿上的三角架等,它們?yōu)槭裁炊家?做成三角形的而不做成四邊形的呢?進(jìn)而揭示三角形具有穩(wěn)定性的特性。這樣,利用學(xué)生的生活實(shí)際和他們所 熟悉的一些生活實(shí)際中的事物或事例,從中獲得感性認(rèn)識,在此基礎(chǔ)上引入概念,是符合兒童認(rèn)知規(guī)律的?,F(xiàn)代心理學(xué)認(rèn)為,實(shí)際操作是兒童智力活動(dòng)的源泉。通過學(xué)生的39。實(shí)際操作引入概念,可以使抽象的概念具 體化。操作活動(dòng),對學(xué)生的思維能力的發(fā)展有著極大地推動(dòng)作用。教學(xué)中,可以讓學(xué)生親自動(dòng)手,量一量、分 一分、算一算、擺一擺,從而獲得第一手感性材料,為抽象概括出新概念打下基礎(chǔ)。如教學(xué)“圓周率”的概念時(shí),可以讓學(xué)生做幾個(gè)直徑不等的圓,在直尺上滾動(dòng)或用繩子量出圓的周長,算 一算周長是直徑的幾倍。讓學(xué)生自己發(fā)現(xiàn)得知圓的大小雖然不同,但周長總是其直徑的3倍多一些, 這時(shí),教 師揭示:圓周長是同圓直徑的3倍多,是個(gè)固定的數(shù), 我們稱它為“圓周率”。當(dāng)通過計(jì)算能揭示數(shù)與形的某些內(nèi)在矛盾或本質(zhì)屬性時(shí),可以從計(jì)算引入概念。如,教學(xué)“互為倒數(shù)”這個(gè)概念時(shí),教師先出示一組題讓學(xué)生口算:31/3,1/77,3/44/3,9/11 11/9……,算后讓學(xué)生觀察這些算式都是幾個(gè)數(shù)相乘,它們的乘積都是幾。根據(jù)學(xué)生的回答,教師指出:象這 樣的乘積是1 的兩個(gè)數(shù)叫做互為倒數(shù)。其它如比例、循環(huán)小數(shù)、約分、通分、最簡分?jǐn)?shù)等都可以從計(jì)算引入。有些概念與學(xué)生原有的舊概念聯(lián)系十分緊密,可以從學(xué)生已有的概念知識基礎(chǔ)上加以引伸,導(dǎo)出新概[1][2][3]篇8:例談小學(xué)數(shù)學(xué)概念的教學(xué)例談小學(xué)數(shù)學(xué)概念的教學(xué)例談小學(xué)數(shù)學(xué)概念的教學(xué)廣州市天河區(qū)華景小學(xué)朱海英數(shù)學(xué)概念是數(shù)學(xué)知識結(jié)構(gòu)中非常核心的內(nèi)容。學(xué)生對數(shù)學(xué)概念的理解與掌握是否準(zhǔn)確、清晰和完整,將直接影響到各種數(shù)學(xué)公式的學(xué)習(xí)和數(shù)學(xué)問題的解決。因此,數(shù)學(xué)教師上好概念課是非常重要的。本文將結(jié)合具體的
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1