【摘要】......圓錐曲線與方程專題1、橢圓考點(diǎn)1、橢圓的定義:橢圓的定義:平面內(nèi)與兩個(gè)定點(diǎn)、的距離的和等于常數(shù)2(大于)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離2c叫橢圓的焦距。特別提示:橢圓的
2025-07-07 15:55
【摘要】一、復(fù)習(xí):橢圓、雙曲線、拋物線:平面內(nèi),到一個(gè)定點(diǎn)(焦點(diǎn)F)和一條定直線(準(zhǔn)線l)的距離之比等于常數(shù)(離心率e)的點(diǎn)的軌跡。3.FLxLFxFxL當(dāng)0e1時(shí),方程表示橢圓,F(xiàn)是左焦點(diǎn),l是左準(zhǔn)線。當(dāng)1e時(shí),方程表示雙曲線,F(xiàn)
2024-08-24 04:36
【摘要】1.設(shè)P是橢圓+=1上的點(diǎn),若F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則|PF1|+|PF2|等于( )A.4 B.5C.8 D.10答案:D2.橢圓+=1的焦點(diǎn)坐標(biāo)是( )A.(±4,0) B.(0,±4)C.(±3,0) D.(0,±3)答案:D3.已知橢圓的兩個(gè)焦點(diǎn)為F1(-1,0),F(xiàn)2(
2024-08-11 20:57
【摘要】雙曲線及其標(biāo)準(zhǔn)方程 一、教學(xué)目標(biāo)(一)知識(shí)教學(xué)點(diǎn)使學(xué)生掌握雙曲線的定義和標(biāo)準(zhǔn)方程,以及標(biāo)準(zhǔn)方程的推導(dǎo).(二)能力訓(xùn)練點(diǎn)在與橢圓的類比中獲得雙曲線的知識(shí),從而培養(yǎng)學(xué)生分析、歸納、推理等能力.(三)學(xué)科滲透點(diǎn)本次課注意發(fā)揮類比和設(shè)想的作用,與橢圓進(jìn)行類比、設(shè)想,使學(xué)生得到關(guān)于雙曲線的定義、標(biāo)準(zhǔn)方程一個(gè)比較深刻的認(rèn)識(shí).二、教材分析1.重點(diǎn):雙曲線的定義和雙曲線
2024-08-23 07:08
【摘要】 圓錐曲線的定義、方程與性質(zhì)]1.設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=-2,則拋物線的方程是( )A.y2=-8xB.y2=8xC.y2=-4xD.y2=4x2.橢圓+=1的離心率為( )A.B.C.D.3.雙曲線2x2-y2=8的實(shí)軸長(zhǎng)是( )A.2B.2C.4D.44.過(guò)拋物線y2=2px(p0)的焦點(diǎn)F的直
【摘要】(2)尋找動(dòng)點(diǎn)與已知點(diǎn)滿足的關(guān)系式;(1),(,)Mxy建立適當(dāng)?shù)闹苯亲鴺?biāo)系設(shè)軌跡上任一點(diǎn)的坐標(biāo)為;步驟:(4)化簡(jiǎn)整理方程;(5)證明所得方程為所求曲線的軌跡方程.上述五個(gè)步驟可簡(jiǎn)記為:建系設(shè)點(diǎn);寫出關(guān)系
2024-11-29 05:28
【摘要】高中數(shù)學(xué)橢圓的知識(shí)總結(jié):平面內(nèi)一個(gè)動(dòng)點(diǎn)P到兩個(gè)定點(diǎn)的距離之和等于常數(shù)(),,兩焦點(diǎn)的距離叫做橢圓的焦距.注意:若,則動(dòng)點(diǎn)P的軌跡為線段;若,則動(dòng)點(diǎn)P的軌跡無(wú)圖形.(1)橢圓:焦點(diǎn)在軸上時(shí)()(參數(shù)方程,其中為參數(shù)),焦點(diǎn)在軸上時(shí)=1()。2.橢圓的幾何性質(zhì):(1)橢圓(以()為例):①范圍:;②焦點(diǎn):兩個(gè)焦點(diǎn);③對(duì)稱性:兩條對(duì)稱軸,一個(gè)對(duì)稱中心(0,0),四個(gè)頂
2025-07-05 12:53
【摘要】第1頁(yè)共35頁(yè)普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座35)—曲線方程及圓錐曲線的綜合問(wèn)題一.課標(biāo)要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問(wèn)題常化為等式解決,要加強(qiáng)等價(jià)轉(zhuǎn)化思想的訓(xùn)練;2.通過(guò)圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合的思想;3.了解圓錐曲線
2024-08-26 15:29
【摘要】圓錐曲線?解析幾何是在坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn)、用方程表示點(diǎn)的軌跡——曲線(包括直線)。通過(guò)研究方程的性質(zhì),進(jìn)一步研究曲線的性質(zhì)。也可以說(shuō),解析幾何是用代數(shù)的方法研究幾何問(wèn)題的一門數(shù)學(xué)學(xué)科。本章是平面解析幾何內(nèi)容中的圓錐曲線部分,是在學(xué)生已掌握平面幾何知識(shí)與平面直角坐標(biāo)系、平面向量、兩點(diǎn)距離公式及基本初等函數(shù)、直線與圓的方程等知識(shí)的基礎(chǔ)上
2024-12-11 02:39
【摘要】鳳凰出版?zhèn)髅郊瘓F(tuán)版權(quán)所有網(wǎng)站地址:南京市湖南路1號(hào)B座808室聯(lián)系電話:025-83657815Mail:第13講圓錐曲線(含軌跡問(wèn)題)本節(jié)知識(shí)在江蘇高考試題中要求比較低,橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)是B級(jí)考點(diǎn),其余都是A級(jí)考點(diǎn),但高
2024-09-11 20:11
【摘要】圓錐曲線內(nèi)容梳理與常見(jiàn)問(wèn)題類型解答寧夏銀川一中張德萍圓錐曲線是高中數(shù)學(xué)的重、難點(diǎn),是每年高考的主干考點(diǎn),它包含的內(nèi)容豐富、題型多樣.表12022-2022年高考全國(guó)卷對(duì)圓錐曲線的總體考查情況題型(題號(hào)/內(nèi)容)題合計(jì)試卷所占年份考卷數(shù)
2024-08-24 04:30
【摘要】精品資源普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座35)—曲線方程及圓錐曲線的綜合問(wèn)題一.課標(biāo)要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問(wèn)題?;癁榈仁浇鉀Q,要加強(qiáng)等價(jià)轉(zhuǎn)化思想的訓(xùn)練;2.通過(guò)圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合的思想;3.了解圓錐曲線的簡(jiǎn)單應(yīng)用。二.命題走向近年來(lái)圓錐曲線在高考中比較穩(wěn)定,解答題往往以中
2025-04-09 06:47
【摘要】九、《圓錐曲線與方程》變式試題XYPODM1.(人教A版選修1-1,2-1第39頁(yè)例2)如圖,在圓上任取一點(diǎn)P,過(guò)點(diǎn)P作X軸的垂線段PD,D為垂足.當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線段PD的中點(diǎn)M的軌跡是什么?變式1:設(shè)點(diǎn)P是圓上的任一點(diǎn),定點(diǎn)D的坐標(biāo)為(8,0).當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求線段PD的中點(diǎn)M的軌跡方程.解:設(shè)點(diǎn)M的坐標(biāo)為,點(diǎn)P的坐標(biāo)為,則,.即,.
2024-08-23 10:24
【摘要】圓錐曲線與方程習(xí)題圓錐曲線與方程練習(xí)題及答案一、選擇題【共12道小題】1、以的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓方程為(?)A.???????????B.????
2024-08-23 14:53
【摘要】WORD資料可編輯課題名稱《圓錐曲線與方程》單元教學(xué)設(shè)計(jì)設(shè)計(jì)者姓名郭曉泉設(shè)計(jì)者單位華亭縣第二中學(xué)
2025-05-27 01:30