【摘要】正弦、余弦函數(shù)的性質(zhì)X(奇偶性、單調(diào)性)正弦、余弦函數(shù)的圖象x6?yo-?-12?3?4?5?-2?-3?-4?1?y=sinx(x?R)x6?o-?-12?3?4?5?-2?-3?-4?1?yy=cosx(x?R)
2024-11-30 03:01
【摘要】難點8關(guān)于奇偶性與單調(diào)性(二)函數(shù)的單調(diào)性、奇偶性是高考的重點和熱點內(nèi)容之一,,掌握基本方法,形成應(yīng)用意識.●難點磁場(★★★★★)已知偶函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.●案例探究[例1]已知奇函數(shù)f(x)是定義在(-3,3)上的減函數(shù),且滿足不等式f(x-3)+f(x2-3)0,設(shè)不等式解
2025-04-19 05:16
【摘要】函數(shù)單調(diào)性和奇偶性一、選擇題(每小題5分,一共12道小題,總分60分)1.命題“若都是偶數(shù),則也是偶數(shù)”的逆否命題是()A.若不是偶數(shù),則與都不是偶數(shù)B.若是偶數(shù),則與不都是偶數(shù)C.若是偶數(shù),則與都不是偶數(shù)D.若不是偶數(shù),則與不都是偶數(shù)2.下列函數(shù)是偶函數(shù)的是()A.B.C.D.3.下列函數(shù)中,在其定
2025-04-08 12:16
【摘要】典型例題函數(shù)的單調(diào)性和奇偶性例1?(1)畫出函數(shù)y=-x2+2|x|+3的圖像,并指出函數(shù)的單調(diào)區(qū)間.解:函數(shù)圖像如下圖所示,當x≥0時,y=-x2+2x+3=-(x-1)2+4;當x<0時,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函數(shù)是增函數(shù):在[-1,0]和[1,+∞)上,函數(shù)是減函數(shù).評析?函數(shù)單調(diào)性是對某個
2025-04-08 12:17
【摘要】1函數(shù)的單調(diào)性與奇偶性講義一,目的要求:(1)理解函數(shù)單調(diào)性的概念,掌握用定義的方法來判斷函數(shù)在給定區(qū)間內(nèi)的增減性。(2)理解函數(shù)奇偶性的概念,掌握奇偶函數(shù)的性質(zhì)。(3)結(jié)合函數(shù)的單調(diào)性和奇偶性,掌握類似判斷函數(shù)值大小等各類綜合運用問題。二,知識要點:(1)函數(shù)的單調(diào)性設(shè)函數(shù)的定義域為,區(qū)間。如果對于上任意的兩點及,當()fxDI?I1x2時,不等
2024-08-23 14:15
【摘要】(一)課型:新授課教學(xué)目標:(1)知識與能力:理解增函數(shù)、減函數(shù)、單調(diào)區(qū)間、單調(diào)性等概念,掌握增(減)函數(shù)的證明和判別,學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。(2)過程與方法:引導(dǎo)學(xué)生通過觀察,歸納,抽象,概括自主構(gòu)建單調(diào)性的概念,使學(xué)生領(lǐng)會數(shù)形結(jié)合的思想方法。(3)情感,態(tài)度,價值觀:培養(yǎng)學(xué)生主動探索,敢于創(chuàng)新的意識和精神,使學(xué)生理性思考生活中的增長和遞減的現(xiàn)象。
2024-08-13 05:18
【摘要】復(fù)合函數(shù)的單調(diào)性和奇偶性 1、復(fù)合函數(shù)的概念 如果是的函數(shù),又是的函數(shù),即,,那么關(guān)于的函數(shù)叫做函數(shù)和的復(fù)合函數(shù),其中是中間變量,自變量為函數(shù)值為?!±纾汉瘮?shù)是由和復(fù)合而成。2、復(fù)合函數(shù)單調(diào)性復(fù)合函數(shù)單調(diào)性判定方法:定理:設(shè)函數(shù)u=g(x)在區(qū)間M上有意義,函數(shù)y=f(u)在區(qū)間N上有意義,且當X∈M時,u∈N。增函數(shù)增函數(shù)增函數(shù)增函
2025-04-19 04:22
【摘要】函數(shù)單調(diào)性、奇偶性練習(xí)一、選擇題1.若函數(shù)f(x)=x(x∈R),則函數(shù)y=-f(x)在其定義域內(nèi)是( )A.單調(diào)遞增的偶函數(shù) B.單調(diào)遞增的奇函數(shù)C.單調(diào)遞減的偶函數(shù) D.單調(diào)遞減的奇函數(shù)2.下列函數(shù)中是奇函數(shù)且在(0,1)上遞增的函數(shù)是( )A.f(x)=x+ B.f(x)=x2-C.f(x)= D.f(x)=x33.已知y=f(x)是定義在
2025-07-03 20:37
【摘要】 函數(shù)的單調(diào)性和奇偶性一、目標認知學(xué)習(xí)目標: 、奇偶性定義; 、證明函數(shù)在給定區(qū)間上的單調(diào)性; ?。弧 ?重點、難點: ?。弧 ?二、知識要點梳理 (1)增函數(shù)、減函數(shù)的概念 一般地,設(shè)函數(shù)f(x)的定義域為A,區(qū)間 如果對于M內(nèi)的任意兩個自變量的值x1、x2,當x1<x2時,都
2024-08-24 02:38
【摘要】函數(shù)的單調(diào)性與奇偶性1.若為偶函數(shù),則下列點的坐標在函數(shù)圖像上的是A.B.C.D.2.下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是A.B.C.3.下列判斷中正確的是
【摘要】一、單調(diào)性二、奇偶性三、周期性四、有界性第三節(jié)函數(shù)的幾種特性一、單調(diào)性定義設(shè)函數(shù)y=f(x)在數(shù)集X(X可以是f(x)的定義域也可以是定義域的一部分).如果對于任意的,當時,均有則稱函數(shù)y=f(x)在區(qū)間X上單調(diào)增加(或單調(diào)減少)
2024-11-01 14:11
【摘要】增函數(shù),減函數(shù)的定義:設(shè)函數(shù)f(x)的定義域為I如果對于屬于定義域I內(nèi)某個區(qū)間上的任意兩個自變量的值x,x,當xx時,都有f(x)f(x),那么就說f(x)在這個區(qū)間上是增函數(shù).111222如果對于屬于定義域I內(nèi)某個區(qū)間上的任意兩個自變量的值x,x,當x
2024-11-03 11:54
【摘要】1、已知的定義域為R,且對任意實數(shù)x,y滿足,求證:是偶函數(shù)。2、已知f(x)是定義在(-∞,+∞)上的不恒為零的函數(shù),且對定義域內(nèi)的任意x,y,f(x)都滿足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判斷f(x)的奇偶性,并說明理由.3、函數(shù)f(x)對任意x?y∈R,總有f(x)+f(y)=f(x+y),且當x0時,
2025-07-04 04:49
【摘要】函數(shù)單調(diào)性、奇偶性、對稱性、周期性解析一、函數(shù)的單調(diào)性1.單調(diào)函數(shù)與嚴格單調(diào)函數(shù)設(shè)為定義在上的函數(shù),若對任何,當時,總有(ⅰ),則稱為上的增函數(shù),特別當且僅當嚴格不等式成立時稱為上的嚴格單調(diào)遞增函數(shù)。(ⅱ),則稱為上的減函數(shù),特別當且僅當嚴格不等式成立時稱為上的嚴格單調(diào)遞減函數(shù)。2.函數(shù)單調(diào)的充要條件★若為區(qū)間上的單調(diào)遞增函數(shù),、為區(qū)間內(nèi)兩任意值,那么有:或
2025-07-01 08:23
【摘要】函數(shù)的單調(diào)性、奇偶性基礎(chǔ)卷選擇題1.若函數(shù)是奇函數(shù),則m的取值是(?。 ? 2.已知函數(shù)y=f(x)在(-3,0)上是減函數(shù),又y=f(x-3)是偶函數(shù),則下列結(jié)論正確的是(?。〢.
2024-08-23 16:22