【摘要】第一章《解三角形》復習12sinsinsinabcRABC???正弦定理及其變形:其中,R是△ABC外接圓的半徑公式變形:a=_______,b=________,c=________2RsinA2RsinB2RsinCsin____,sin____,sin_
2024-08-24 16:45
【摘要】........歷屆高考中的“解三角形”試題精選(自我測試)一、選擇題:(每小題5分,計40分)1.(2008北京文)已知△ABC中,a=,b=,B=60°,那么角A等于()(A)135° (B)90°
2025-05-02 12:34
【摘要】《解三角形》一、正弦定理:=2R推論:(1)(2)a=2RsinAb=2RsinBc=2RsinC(3)1.在△中,若,則=2.在△中,b=6,A=300,則B=3.【2013山東文】在中,若滿足,,,則4.【2010山東高考填空1
2025-04-24 07:07
【摘要】解三角形復習主干知識梳理1.兩角和與差的正弦、余弦、正切公式(1)sin(α±β)=sinαcosβ±cosαsinβ.(2)cos(α±β)=cosαcosβ?sinαsinβ.(3)t
2024-08-24 16:02
【摘要】........解三角形高考真題(一) 一.選擇題(共9小題)1.△ABC的內角A,B,C的對邊分別為a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,則C=( )A. B. C. D.2.在ABC中,角A,B,C的對
【摘要】解三角形高考大題,帶答案1.(寧夏17)(本小題滿分12分)BACDE如圖,是等邊三角形,是等腰直角三角形,,交于,.(Ⅰ)求的值;(Ⅱ)求.解:(Ⅰ)因為,,所以.所以. 6分(Ⅱ)在中,,由正弦定理.故. 12分2.(江蘇17)(14分)某地有三家工廠,分別位于矩形ABCD的頂點A、B及CD的中點P處,已知AB=20k
2025-07-03 18:56
2025-07-03 19:33
【摘要】........專題精選習題----解三角形1.在中,內角的對邊分別為,已知.(1)求的值;(2)若,求的面積.2.在中,角的對邊分別是,已知.(1)求的值;(2)若,求邊的值.
2025-05-02 13:17
【摘要】,可以將函數的圖象 ( ?。〢.向右平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向左平移個單位長度,則()A. B. C. D.,設A、B兩點在河的兩岸,一測量者在A的同側所在的河岸邊選定一點C,測出AC的距離為50m,后,就可以計算出A、B兩點的距離為()A.B.C.D.( ?。〢.B.
2025-05-01 12:49
【摘要】要點疑點考點課熱身能力思維方法延伸拓展誤解分析第6課時三角形中的有關問題前要點要點穧疑點疑點穧考點考點1.正弦定理:(1)定理:a/sinA=b/sinB=c/sinC=2R(其中R為△ABC外接圓的半徑
2024-11-29 01:52
【摘要】......1.(2013大綱)設的內角的對邊分別為,.(I)求(II)若,求.2.(2013四川)在中,角的對邊分別為,且.(Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.3.(2013山東)設△的內角所對的邊分別為,且
【摘要】......全等三角形綜合復習切記:“有三個角對應相等”和“有兩邊及其中一邊的對角對應相等”的兩個三角形不一定全等。例1.如圖,四點共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例
2025-07-08 03:58
【摘要】?1.1正弦定理一、正弦定理1.在一個三角形中,各邊和它所對角的正弦的比相等,即①________=2R(其中R是△ABC外接圓的半徑).2.正弦定理的三種變形(1)a=2RsinA,②________,c=2RsinC;(2)③________,s
2024-12-02 17:10
【摘要】(2010哈爾濱)在Rt△ABC中,∠C=90°,∠B=35°,AB=7,則BC的長為().C(A)7sin35°(B)(C)7cos35°(D)7tan35°(2010紅河自治州)計算:+2sin60°=(2010紅河自治州)(本小題滿分9分)如圖5,一架飛機
2024-08-23 12:59
2024-08-24 19:13