【摘要】......相似三角形,已知一個三角形紙片,邊的長為8,邊上的高為,和都為銳角,為一動點(diǎn)(點(diǎn)與點(diǎn)不重合),過點(diǎn)作,交于點(diǎn),在中,設(shè)的長為,上的高為.(1)請你用含的代數(shù)式表示.(2)將沿折疊,使落在四邊形所在平面,設(shè)
2025-04-09 06:32
【摘要】.,....三角函數(shù)與解三角形高考真題1.【2015湖南理17】設(shè)的內(nèi)角,,的對邊分別為,,,,且為鈍角.(1)證明:;(2)求的取值范圍.2.【2014遼寧理17】(本小題滿分12分)在中,內(nèi)角A,B,C的對邊a,b,c,且,已知,
2025-05-01 12:49
【摘要】約定用A,B,C分別表示△ABC的三個內(nèi)角,分別表示它們所對的各邊長1.正弦定理:=.(R為△ABC外接圓半徑).△ABC的面積為S△ABC=2.余弦定理:.:角平分線分對邊所得兩段線段的比等于角兩邊之比.:若ABC則.::題組11.(1),判斷的形狀.(2)證明:(3)證明(4)證明:
2025-05-01 12:12
【摘要】第一章《解三角形》復(fù)習(xí)12sinsinsinabcRABC???正弦定理及其變形:其中,R是△ABC外接圓的半徑公式變形:a=_______,b=________,c=________2RsinA2RsinB2RsinCsin____,sin____,sin_
2024-08-24 16:45
【摘要】解三角形復(fù)習(xí)主干知識梳理1.兩角和與差的正弦、余弦、正切公式(1)sin(α±β)=sinαcosβ±cosαsinβ.(2)cos(α±β)=cosαcosβ?sinαsinβ.(3)t
2024-08-24 16:02
【摘要】....解三角形題型分類題型一:正余弦定理推論的應(yīng)用題型二:三角形解的個數(shù)的確定
2025-04-09 07:46
【摘要】......三角函數(shù)與解三角形 測試時間:120分鐘 滿分:150分第Ⅰ卷 (選擇題,共60分)一、選擇題(本題共12小題,每小題5分,共60分,每小題只有一個選項符合題意) 1
2025-05-30 23:44
【摘要】專業(yè)資料整理分享解三角形應(yīng)用舉例一、選擇題1.(2014·浙江高考文科·T10)如圖,某人在垂直于水平地面ABC的墻面前的點(diǎn)A處進(jìn)行射擊訓(xùn)練,已知點(diǎn)A到墻面的距離為AB,某目標(biāo)點(diǎn)P沿墻面的射擊線CM移動,此人為了準(zhǔn)確瞄準(zhǔn)目標(biāo)點(diǎn)P,需計算由點(diǎn)A觀察
2025-07-03 20:18
【摘要】3??6?o1x1?y解答題1.已知函數(shù)2()3sin22sinfxxx??.(Ⅰ)若點(diǎn)(1,3)P?在角?的終邊上,求()f?的值;(Ⅱ)若[,]63x????,求()fx的值域.解:(Ⅰ)因?yàn)辄c(diǎn)(1,3)P?在角?的終邊上,所以3sin2?
2024-12-14 15:37
【摘要】三角函數(shù)解三角形專題 一.解答題(共33小題)1.設(shè)函數(shù)f(x)=cos2x+sin2(x+).(Ⅰ)求f(x)的最小正周期和單調(diào)遞增區(qū)間;(Ⅱ)當(dāng)x∈[﹣,)時,求f(x)的取值范圍.2.已知函數(shù)f(x)=4sinx?sin(x+)﹣1,(1)求f(x)的最小正周期;(2)求f(x)在區(qū)間[﹣,]上的最大值和最小值.3.已知函數(shù)f(x)=2sin(ax﹣
2024-08-23 23:16
【摘要】1正余弦定理的專項題型題型1:利用正余弦定理判斷三角形形狀兩種途徑:(1)利用正、余弦定理把已知條件轉(zhuǎn)化為邊邊關(guān)系,通過因式分解、配方等得出邊的相應(yīng)關(guān)系,從而判斷三角形的形狀;(2)利用正、余弦定理把已知條件轉(zhuǎn)化為內(nèi)角的三角函數(shù)間的關(guān)系,通過三角函數(shù)恒等變形,得出內(nèi)角的關(guān)系,從而判斷出三角形的形狀,此時要注意應(yīng)用A+B+C=π這
2024-08-22 21:48
【摘要】專題考案解三角形(時間:90分鐘滿分:100分)一、選擇題(9×3′=27′)1.在△ABC中,“A30°”是“sinA”的()2.已知△ABC中,a=x,b=2,∠B=45°,若這個三角形有兩解,則的取值范圍是
2025-06-22 23:53
【摘要】相似三角形綜合大題參考答案與試題解析一.解答題(共30小題)1.(2012?昌平區(qū)二模)如圖,在Rt△ABC中,∠ABC=90°,過點(diǎn)B作BD⊥AC于D,BE平分∠DBC,交AC于E,過點(diǎn)A作AF⊥BE于G,交BC于F,交BD于H.(1)若∠BAC=45°,求證:①AF平分∠BAC;②FC=2HD.(2)若∠BAC=30°,請直接寫出FC
【摘要】第一篇:解三角形公式[大全] 1、正弦定理:在DABC中,a、b、c分別為角A、B、C的對邊,R為DABC的外接圓的半徑,則有 2、正弦定理的變形公式:① ②sinA=sinB=sinC= ③...
2024-10-26 23:10
【摘要】第7講解三角形第7講│云覽高考[云覽高考]考點(diǎn)統(tǒng)計題型(頻率)考例(難度)考點(diǎn)1正弦定理與余弦定理選擇(1)解答(1)2022湖北卷8(B),2011湖北卷16(B)考點(diǎn)2三角形的面積問題0考點(diǎn)3解三角形的實(shí)際應(yīng)
2024-08-24 17:39