【摘要】-202462-4xy⑴若-3≤x≤3,該函數(shù)的最大值、最小值分別為()、()。⑵又若0≤x≤3,該函數(shù)的最大值、最小值分別為()、()。求函數(shù)的最值問題,應(yīng)注
2025-01-22 09:52
【摘要】§二次函數(shù)的運用(1)【何時獲得最大利潤】教學(xué)目標(biāo):體會二次函數(shù)是一類最優(yōu)化問題的數(shù)學(xué)模型.了解數(shù)學(xué)的應(yīng)用價值,掌握實際問題中變量之間的二次函數(shù)關(guān)系,并運用二次函數(shù)的知識求出實際問題的最大值、最小值.教學(xué)重點:本節(jié)重點是應(yīng)用二次函數(shù)解決實際問題中的最值.應(yīng)用二次函數(shù)解決實際問題,要能正確分析和把握實際問題的數(shù)量關(guān)系
2025-01-22 19:51
【摘要】義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書SHUXUE九年級下一座拱橋的縱截面是拋物線的異端,拱橋的跨度是米,水面寬是4米時,拱頂離水面2米,如圖.想了解水面寬度變化時,拱頂離水面的高度怎樣變化.你能想出辦法來嗎?4m2m建立函數(shù)模型這是什么樣的函數(shù)呢?拱橋的縱截面是拋物線應(yīng)當(dāng)是某個二次函數(shù)的圖象你能想出辦法
2025-01-22 06:23
2025-02-02 04:05
【摘要】專題復(fù)習(xí):二次函數(shù)的圖象與性質(zhì)復(fù)習(xí)目標(biāo):1、復(fù)習(xí)掌握二次函數(shù)的圖象與性質(zhì)。2、熟練求二次函數(shù)的解析式。3、掌握二次函數(shù)與一元二次方程及一元二次不等式的關(guān)系。課前熱身(學(xué)生獨立練習(xí),分小組批改)1、二次函數(shù)解析式的三種表示方法:(1)一般式:(2)交點式:____
2025-02-10 12:05
【摘要】九年級數(shù)學(xué)下冊教學(xué)目標(biāo)設(shè)計:通過本節(jié)學(xué)習(xí),鞏固二次函數(shù)y=ax2+bx+c(a≠0)的圖象與性質(zhì),理解頂點與最值的關(guān)系,會用頂點的性質(zhì)求解最值問題。能力訓(xùn)練要求1、能夠分析實際問題中變量之間的二次函數(shù)關(guān)系,并運用二次函數(shù)的知識求出實際問題的最大(?。┲蛋l(fā)展學(xué)生解決問題的能力,學(xué)會用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題。2、通
2025-02-11 06:02
【摘要】九年級數(shù)學(xué)下冊二次函數(shù)的應(yīng)用教案二湘教版一、教學(xué)目標(biāo):1、體驗從實際問題中抽象出函數(shù)關(guān)系式的過程,進(jìn)一步感受數(shù)學(xué)模型思想和數(shù)學(xué)應(yīng)用價值。2、能夠運用二次函數(shù)的性質(zhì)和圖象解決實際問題。二、教學(xué)重點、難點:用二次函數(shù)的性質(zhì)和圖象解決實際問題。三、教學(xué)過程:1、情境創(chuàng)設(shè):某噴灌設(shè)備的噴頭B高出地面,如果噴出的拋物線形水流的
2025-01-23 02:08
【摘要】教學(xué)設(shè)計思想:本節(jié)主要研究的是與二次函數(shù)有關(guān)的實際問題,重點是實際應(yīng)用題,在教學(xué)過程中讓學(xué)生運用二次函數(shù)的知識分析問題、解決問題,在運用中體會二次函數(shù)的實際意義。二次函數(shù)與一元二次方程、一元二次不等式有密切聯(lián)系,在學(xué)習(xí)過程中應(yīng)把二次函數(shù)與之有關(guān)知識聯(lián)系起來,融會貫通,使學(xué)生的認(rèn)識更加深刻。另外,在利用圖像法解方程時,圖像應(yīng)畫得準(zhǔn)確一些,使求得的解更準(zhǔn)確,在求解過
2025-02-10 23:47
【摘要】二次函數(shù)的應(yīng)用(1)-----解析式的求法(1)已知二次函數(shù)圖象經(jīng)過點(-1,-6)、(1、-2)和(2,3),求這個二次函數(shù)的解析式。(2)已知拋物線的頂點為(-1,-3),與y軸的交點為(0,-5),求此拋物線的解析式(3)已知拋物
2025-02-02 14:39
【摘要】教學(xué)目標(biāo)設(shè)計:通過本節(jié)學(xué)習(xí),鞏固二次函數(shù)y=ax2+bx+c(a≠0)的圖象與性質(zhì),理解頂點與最值的關(guān)系,會用頂點的性質(zhì)求解最值問題。能力訓(xùn)練要求1、能夠分析實際問題中變量之間的二次函數(shù)關(guān)系,并運用二次函數(shù)的知識求出實際問題的最大(?。┲蛋l(fā)展學(xué)生解決問題的能力,學(xué)會用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題。2、通過觀察圖象,理解頂點
2025-01-23 02:12
【摘要】實際問題抽象轉(zhuǎn)化數(shù)學(xué)問題運用數(shù)學(xué)知識問題得解返回解釋檢驗例1.某涵洞是拋物線形,它的截面如圖26.2.9所示,現(xiàn)測得水面寬1.6m,涵洞頂點O到水面的距離為2.4m,在圖中直角坐標(biāo)系內(nèi),涵洞所在的拋物線的函數(shù)關(guān)系式是什么?AB解:如圖,以AB的垂直平分線
2025-02-02 12:19
【摘要】義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書SHUXUE九年級下湖南教育出版社學(xué)校準(zhǔn)備在校園里利用圍墻的一段,再砌三面墻,圍成一個矩形植物園如圖所示,現(xiàn)在已備足可以砌100米長的墻的材料,怎樣砌法,才能使矩形植物園的面積最大?(1002),050,sxxx????設(shè)與已有墻面相鄰的每一面墻的長度都為xm,則與已
2025-02-10 13:22
【摘要】九年級數(shù)學(xué)下冊二次函數(shù)的應(yīng)用課時訓(xùn)練湘教版【知識要點】運用二次函數(shù)求實際問題中的最大值或最小值,首先用應(yīng)當(dāng)求出函數(shù)解析式和自變量的取值范圍,求得的最大值或最小值對用的字變量的值必須在自變量的取值范圍內(nèi).課內(nèi)同步精練●A組基礎(chǔ)練習(xí)1.二次函數(shù)y=x2-3x-4的頂點坐標(biāo)是,對稱軸是直線
2025-02-07 15:37
【摘要】函數(shù)?一次函數(shù)?反比例函數(shù)?二次函數(shù)y=kx+b(k≠0)正比例函數(shù)一條直線??ky=k≠0x雙曲線y=kx(k≠0)一般形式圖象問題1:用總長為60m的籬笆圍成矩形場地,場地面積S(m2)與矩形一邊長a(m)之間的關(guān)系是什么?
2025-02-02 03:57
【摘要】二次函數(shù)(一),形如:稱為y是x的二次函數(shù),它的圖象是:y=ax2+bx+c的特征與a、b、c的符號(1)a決定開口方向:(2)a與b決定對稱軸位置:???;,0,,0開口向下開口向上??