【摘要】:)1(2baab??問題探究.)2()0,0(22:)1.(122立的條件請寫出上述兩式等號成②①請你證明探究??????baabbaabba.,1.,)1.(2請你找出并證明中的一個不等式著探究其中隱含形的直角三角形圍成正方分別為以四個全等的兩直角邊探究ABC
2025-04-13 14:58
【摘要】基本不等式:第1課時基本不等式1.理解并掌握基本不等式及其推導過程,明確基本不等式成立的條件.2.能利用基本不等式求代數(shù)式的最值.121.重要不等式當a,b是任意實數(shù)時,有a2+b2≥2ab,當且僅當a=b時,等號成立.(1)公式中a,b的取值是
2025-01-20 19:03
【摘要】【高考調(diào)研】2021年高中數(shù)學課時作業(yè)31基本不等式1新人教版必修5(第一次作業(yè))1.下列函數(shù)中,最小值為4的函數(shù)是()A.y=x+4xB.y=sinx+4sinxC.y=ex+4e-xD.y=log3x+logx81答案C解析A、D不能保證是正數(shù)之和,sinx
2025-01-31 01:20
【摘要】:2baab??復習引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2025-01-22 18:02
【摘要】:2baab??引入新課提問1:我們把“風車”造型抽象成下圖.在正方形ABCD中有4個全等的直角三角形.設直角三角形的兩條直角邊的長為a、b,那么正方形的邊長為多少?面積為多少呢?ADCBGEFH引入新課提問1:我們把“風車”造型抽象成下圖.在
2025-01-22 18:20
【摘要】知識回顧1.重要不等式;2.基本不等式。(均值)回顧練習.abcdbdaccdabdcbacabcabcbaRcba4211222?????????))(證:(都為正數(shù),求,,,)已知 ?。ǎ笞C:,,)設:( 練習們的積最大?個正數(shù)取什么值時,它這兩寫成兩個正數(shù)的和,當)把 ?。?/span>
【摘要】知識回顧1.基本不等式;(均值)2.基本不等式求最值的條件回顧練習。的最小值為恒成立,則實數(shù),且不等式,設 __________kbakbaba.011001??????多大速度行駛?本最小,汽車應以),為了使全程運輸成元(;固定部分為為方成正比,且比例系數(shù))的平(單位度部分組成;可變部分
2025-04-13 14:59
【摘要】【高考調(diào)研】2021年高中數(shù)學課時作業(yè)32基本不等式2新人教版必修5(第二次作業(yè))1.下列函數(shù)中,最小值為4的是()A.f(x)=x+4xB.f(x)=2×x2+5x2+4C.f(x)=3x+4×3-xD.f(x)=lgx+logx10答案C
【摘要】一元二次不等式及其解法(第1課時)學習目標、一元二次不等式與二次函數(shù)的關(guān)系..合作學習一、設計問題,創(chuàng)設情境問題1:觀察不等式x2-4x0,它們有什么共同特征?怎樣給這樣的不等式命名?它的一般形式是什么?問題2:請嘗試求解不等式x2-4x0.
2025-02-11 03:40
【摘要】不等關(guān)系與不等式(1)教學目標:1.知識與技能:通過具體情景,感受在現(xiàn)實世界和日常生活中存在著大量不等關(guān)系,理解不等式(組)的實際背景,掌握不等式的基本性質(zhì),會用不等式的性質(zhì)證明簡單的不等式.2.過程與方法:通過解決具體問題,學會依據(jù)具體問題的實際背景分析問題、解決問題的方法.3.情感、態(tài)度與價值觀:通過解決具體問題,體會數(shù)
2025-02-11 03:41
【摘要】:2baab??復習引入1.基本不等式:;)(2,,)1(22”號時取“當當且僅那么如果?????baabbaRba復習引入1.基本不等式:;)(2,,)1(22”號時取“當當且僅那么如果?????baabbaRba;)(2,,)2
2025-01-21 08:48
【摘要】【高考調(diào)研】2021年高中數(shù)學課時作業(yè)29基本不等式ab≤a+b2(第1課時)新人教版必修5(第一次作業(yè))1.不等式a2+1≥2a中等號成立的條件是()A.a(chǎn)=±1B.a(chǎn)=1C.a(chǎn)=-1D.a(chǎn)=0答案B2.設ab0,則下列不等式中一定成立的是
2025-01-31 00:25
【摘要】第2課時基本不等式的應用1.復習鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會解決有關(guān)的實際應用問題.121.重要不等式a2+b2≥2ab(1)證明:課本應用了圖形間的面積關(guān)系推導出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2025-01-21 08:10
【摘要】不等關(guān)系與不等式A組基礎鞏固1.已知cb0,下列不等式中必成立的一個是()A.a(chǎn)+cb+dB.a(chǎn)-cb-dC.a(chǎn)dbd解析:∵c-∵ab0,∴a-cb-B.答案:B2
2025-02-10 20:21
【摘要】如果a,b∈R,那么a2+b2≥2ab(當且僅當a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當時,當abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理: