【摘要】2020屆高考數(shù)學(xué)二輪復(fù)習(xí)系列課件15《等差數(shù)列、等比數(shù)列》)(1nfmaann???考試背景遞推列:)(1nfmaann???在06-08年的高考中,歷年都有涉及,如(不完全統(tǒng)計(jì)):06年:全國理Ⅰ,福建;07年:全國理Ⅰ,理Ⅱ;08年:全國理Ⅱ.一、基礎(chǔ)知識(shí)3.
2025-01-14 02:52
【摘要】第1講 等差數(shù)列、等比數(shù)列【自主學(xué)習(xí)】第1講 等差數(shù)列、等比數(shù)列(本講對(duì)應(yīng)學(xué)生用書第57~59頁)自主學(xué)習(xí) 回歸教材1.(必修5P39例3改編)已知等差數(shù)列{an},如果點(diǎn)(n,an)在直線y=2x-1上,那么公差d= .【答案】2【解析】由題意知an=2n-1,所以公差為2.2.(必修5P48習(xí)題7改編)在等差數(shù)列{an}中,已知S
2024-08-09 16:37
【摘要】山西省朔州市應(yīng)縣四中高二數(shù)學(xué)學(xué)案(十一)等差數(shù)列與等比數(shù)列編寫人:朱強(qiáng)基考綱要求1理解數(shù)列的有關(guān)概念,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng)。2掌握等差數(shù)列與等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和的公式,并能夠運(yùn)用這些知識(shí)解決一些問題。重點(diǎn)、難點(diǎn)歸納1數(shù)列的有關(guān)概念數(shù)列:按照一定的次序排列的一列數(shù)。通項(xiàng)公式:數(shù)列的第n項(xiàng)an與n之
2025-06-04 08:11
【摘要】等差數(shù)列、等比數(shù)列測(cè)試題班級(jí)_________姓名__________學(xué)號(hào)___________一、選擇題1.一個(gè)等差數(shù)列的第一項(xiàng)是32,若這個(gè)數(shù)列從15項(xiàng)開始小于1,那么這個(gè)數(shù)列的公差d的取值范圍是()A.d1431B.d
2025-01-15 03:39
【摘要】中國領(lǐng)先的中小學(xué)教育品牌精銳教育學(xué)科教師輔導(dǎo)講義講義編號(hào)11sh11sx00學(xué)員編號(hào):年級(jí):課時(shí)數(shù):3學(xué)員姓名:
2024-09-28 16:48
【摘要】第一篇:等差數(shù)列、等比數(shù)列知識(shí)點(diǎn)梳理 等差數(shù)列和等比數(shù)列知識(shí)點(diǎn)梳理 第一節(jié):等差數(shù)列的公式和相關(guān)性質(zhì) 1、等差數(shù)列的定義:對(duì)于一個(gè)數(shù)列,如果它的后一項(xiàng)減去前一項(xiàng)的差為一個(gè)定值,則稱這個(gè)數(shù)列為等差...
2024-11-09 22:38
【摘要】構(gòu)造等差數(shù)列或等比數(shù)列?由于等差數(shù)列與等比數(shù)列的通項(xiàng)公式顯然,對(duì)于一些遞推數(shù)列問題,若能構(gòu)造等差數(shù)列或等比數(shù)列,無疑是一種行之有效的構(gòu)造方法.?例1?設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為Sn,對(duì)于任意正整數(shù)n,都有等式:成立,求的通項(xiàng)an.?解:,??∴????,
2024-08-04 16:44
【摘要】1.【2017浙江,6】已知等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn,則“d0”是“S4+S62S5”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】C【考點(diǎn)】等差數(shù)列、充分必要性【名師點(diǎn)睛】本題考查等差數(shù)列的前項(xiàng)和公式,通過公式的套入與簡(jiǎn)單運(yùn)算,可知,結(jié)合充分必要性的判斷,若,則是的充
2025-06-04 01:49
【摘要】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件36《等差數(shù)列與等比數(shù)列的綜合問題》課前熱身:30,37,32,35,34,33,36,(),38的特點(diǎn),在括號(hào)內(nèi)適當(dāng)?shù)囊粋€(gè)數(shù)是_____.x的方程x2-x+a=0和x2-x+b=0(a,b∈R且a≠b)的四
2025-01-14 08:49
【摘要】§等差數(shù)列一.課程目標(biāo);;,并能用等差數(shù)列的有關(guān)知識(shí)解決相應(yīng)的問題;.二.知識(shí)梳理如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示.數(shù)學(xué)語言表達(dá)式:an+1-an=d(n∈N*,d為常數(shù)),或an-an-1=d(n≥2,d為常數(shù)).2.
2025-05-12 06:56
【摘要】1知識(shí)概括數(shù)列問題的綜合性與靈活性說明競(jìng)賽輔導(dǎo)-數(shù)列(一)等差數(shù)列與等比數(shù)列2等差數(shù)列、等比數(shù)列是兩個(gè)最基本的數(shù)列.等差數(shù)列等比數(shù)列定義數(shù)列{an}的后一項(xiàng)與前一項(xiàng)的差an-an-1為常數(shù)d(d為公差)數(shù)列{an}的后一項(xiàng)與前一項(xiàng)的
2025-04-11 00:53
【摘要】等差、等比數(shù)列的求和公式一、考綱要求:掌握等差的求和公式、等比數(shù)列的求和公式.二、教學(xué)目標(biāo):1、掌握等差數(shù)列前n項(xiàng)和公式及其推導(dǎo)過程2、掌握等比數(shù)列前n項(xiàng)和公式及其推導(dǎo)過程3、能熟練利用公式解決相關(guān)問題三、重點(diǎn)難點(diǎn)掌握公式的推導(dǎo)方法和公式的應(yīng)用教學(xué)過程:知識(shí)梳理:1.(1)等差數(shù)列的前項(xiàng)和(倒序相加法):公式1:公式2:;(2)若數(shù)
2025-07-25 21:56
【摘要】《九章算術(shù)》中的等差、等比數(shù)列陜西省榆林市橫山區(qū)橫山中學(xué)劉克忠2016年9月26日,教育部考試中心下發(fā)《關(guān)于2017年普通高考考試大綱修訂內(nèi)容的通知》,內(nèi)涵方面,增加了基礎(chǔ)性、綜合性、應(yīng)用性、創(chuàng)新性的要求,特別增加了數(shù)學(xué)文化的要求.提起數(shù)學(xué)文化,其輝煌的成就,《九章算術(shù)》是代表作.《九章算術(shù)》系統(tǒng)總結(jié)了戰(zhàn)國、秦、漢時(shí),收有246個(gè)與生產(chǎn)、生活實(shí)踐有聯(lián)系的
2025-05-25 02:20
【摘要】1等差數(shù)列求和公式:(1)Sn=n(a1+an)/2(2)Sn=na1+n(n-1)d/22等比數(shù)列求和公式:(1)Sn=1-qa1(1-qn)q≠1q≠1(2)Sn=1-qa1-anq當(dāng)q=1時(shí),Sn=na1練習(xí):求和1.1+2+3+……+n答案:Sn=n
2025-07-15 17:19
【摘要】第一篇:等比數(shù)列求和教案 《等比數(shù)列的前n項(xiàng)和》教學(xué)設(shè)計(jì) 教材:人教版必修五§ 教學(xué)目標(biāo):(1)知識(shí)目標(biāo):理解等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法;掌握等比數(shù)列的前 n項(xiàng)和公式并能運(yùn)用公式解決一些...
2024-10-13 19:29