【摘要】不等式的性質課件不等式的性質(1)世界上所有的事物不等是絕對的,相等是相對的。過去我們已經接觸過許多不等式的問題,本章我們將較系統(tǒng)地研究有關不等式的性質、證明、解法和應用.1.判斷兩個實數大小的充要條件對于任意兩個實數a、b,在a>b,a=b,a<b三種關系中有且僅有一種成立.判斷兩個實數大小的充要條件是:
2025-01-20 11:59
【摘要】二元一次不等式(組)所表示的平面區(qū)域雙基達標限時20分鐘1.下面給出的四個點中,位于?????x+y-10,表示的平面區(qū)域內的點是().A.(0,2)B.(-2,0)C.(0,-2)D.(2,0)解析依次將A、B、C、D四個選項代
2025-01-30 23:54
【摘要】雙基達標?限時20分鐘?1.下列角中,終邊與330°角終邊相同的是().A.-630°B.-1830°C.30°D.990°解析與330°角終邊相同的角α=330°+k·360°(k
2025-01-30 23:51
【摘要】簡單線性規(guī)劃雙基達標限時20分鐘1.設x,y滿足?????2x+y≥4,x-y≥-1,x-2y≤2,則z=x+y().A.有最小值2,最大值3B.有最小值2,無最大值C.有最大值3,無最小值D.無最小值,也無最大值解析不等式組?????
2025-01-31 01:55
【摘要】雙基達標?限時20分鐘?1.函數y=-sinx,x∈??????-π2,3π2的簡圖是().解析由y=sinx與y=-sinx的圖象關于x軸對稱可知選D.答案D2.在[0,2π]內,不等式sinx-32的解集是().A.(0,
2025-01-30 23:47
【摘要】雙基達標?限時20分鐘?1.函數y=3sin??????2x+π6的圖象的一條對稱軸方程是().A.x=0B.x=2π3C.x=-π6D.x=π3解析令sin??????2x+π6=±1,得2x+π6=kπ+π2(k∈Z),即x=k2π
2025-01-31 01:12
【摘要】習題課正弦定理和余弦定理的應用雙基達標限時20分鐘1.在△ABC中,已知cosAcosBsinAsinB,則△ABC是().A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形解析cosAcosBsinAsinB?cos(A+B)0,∴A+B9
【摘要】雙基達標?限時20分鐘?1.如果e1、e2是平面α內所有向量的一組基底,那么下列命題正確的是().A.若實數λ1、λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.對空間任一向量a都可以表示為a=λ1e1+λ2e2,其中λ1、λ2∈RC.λ1e1+λ2e
2025-01-30 23:46
【摘要】不等式的性質素材?一.復習?不等式的基本原理及含義?a-b0ab?a-b=0a=b?a-bab?四大作用:?(1)比較兩個實數的大小,(2)推導不等式的性質
2025-01-21 12:09
【摘要】雙基達標?限時20分鐘?1.計算sin(-1380°)的值為().A.-12C.-32D.32解析sin(1380°)=sin[60°+(-4)×360°]=sin60°=32.答案
【摘要】雙基達標?限時20分鐘?1.計算cos80°cos20°+sin80°·sin20°的值為().A.22B.32D.-22答案C2.設α∈??????0,π2,若sinα=35,則2cos
【摘要】雙基達標?限時20分鐘?1.在△ABC中,若AB=AC,D、E分別是AB、AC的中點,則().→=CE→→與CE→共線→=BC→→與BC→共線解析如圖,可知DE∥DE→與
【摘要】雙基達標?限時20分鐘?1.已知a=(1,-1),b=(2,3),則a·b=().A.5B.4C.-2D.-1解析a·b=1×2+(-1)×3=-1.答案D2.已知向量a=(-2,1),b=
2025-01-30 23:43
【摘要】第三章不等式§不等關系與不等式自主學習知識梳理1.比較實數a,b的大小(1)文字敘述如果a-b是正數,那么a________b;如果a-b為______,那么a=b;如果a-b是負數,那么a______b,反之也成立.(2)符號表示a-b0?
2025-01-22 23:20
【摘要】雙基達標?限時20分鐘?1.下列敘述錯誤的是().A.arctana表示一個??????-π2,π2內的角B.若x=arcsina,則sinx=aC.若tanx2=a,則x=arctan2aD.arcsina、arccosa中的a∈[-1,1]答案C2.若α