【摘要】導(dǎo)數(shù)的概念及其幾何意義變化率問(wèn)題:已知函數(shù)y=f(x),令Δx=21xx?,21()()yfxfx??,則當(dāng)0x?時(shí),比值2121()()fxfxxx??=yx,稱(chēng)作函數(shù)f(x)從1x到2x得平均變化率.:物體在某一時(shí)刻的速度.Δx=0xx?,函數(shù)的增量000()
2025-01-22 20:36
【摘要】高考中導(dǎo)數(shù)問(wèn)題的六大熱點(diǎn)由于導(dǎo)數(shù)其應(yīng)用的廣泛性,為解決函數(shù)問(wèn)題提供了一般性的方法及簡(jiǎn)捷地解決一些實(shí)際問(wèn)題.因此在高考占有較為重要的地位,其考查重點(diǎn)是導(dǎo)數(shù)判斷或論證單調(diào)性、函數(shù)的極值和最值,利用導(dǎo)數(shù)解決實(shí)際問(wèn)題等方面,下面例析導(dǎo)數(shù)的六大熱點(diǎn)問(wèn)題,供參考.一、運(yùn)算問(wèn)題例1已知函數(shù)22()(1)xbfxx???,求導(dǎo)函數(shù)()fx?.
2025-02-07 06:34
【摘要】導(dǎo)數(shù)的幾何意義【例1】曲線f(x)=x3+2x+1在點(diǎn)M處的切線的斜率為2,求M的坐標(biāo)【例2】由原點(diǎn)O向三次曲線y=x3-3ax2+bx(a≠0)引切線,切于不同于O的點(diǎn)P1(x1,y1).再由P1引曲線的切線,切于不同于P1的點(diǎn)P2(x2,y2),…,如此繼續(xù)地作下去,得到點(diǎn)列{Pn(xn,yn)},試
2025-01-22 23:16
【摘要】導(dǎo)數(shù)在實(shí)際問(wèn)題中的應(yīng)用教學(xué)目的:1.進(jìn)一步熟練函數(shù)的最大值與最小值的求法;⒉初步會(huì)解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題教學(xué)重點(diǎn):解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題.教學(xué)難點(diǎn):解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題.授課類(lèi)型:新授課課時(shí)安排:1課時(shí)教具:多媒體、實(shí)物投影儀教學(xué)過(guò)
【摘要】用導(dǎo)數(shù)求切線方程的四種類(lèi)型求曲線的切線方程是導(dǎo)數(shù)的重要應(yīng)用之一,用導(dǎo)數(shù)求切線方程的關(guān)鍵在于求出切點(diǎn)00()Pxy,及斜率,其求法為:設(shè)00()Pxy,是曲線()yfx?上的一點(diǎn),則以P的切點(diǎn)的切線方程為:000()()yyfxxx????.若曲線()yfx?在點(diǎn)00(())Pxfx,的切線平行于y軸(即
2025-01-22 23:15
【摘要】導(dǎo)數(shù)與函數(shù)的單調(diào)性一、學(xué)習(xí)目標(biāo)1.會(huì)從幾何直觀探索并了解函數(shù)的單調(diào)性與其導(dǎo)數(shù)之間的關(guān)系,并會(huì)靈活應(yīng)用;2.會(huì)用導(dǎo)數(shù)判斷或證明函數(shù)的單調(diào)性;3.通過(guò)對(duì)函數(shù)單調(diào)性的研究,加深對(duì)函數(shù)導(dǎo)數(shù)的理解,提高用導(dǎo)數(shù)解決實(shí)際問(wèn)題的能力.二、學(xué)習(xí)重、難點(diǎn)靈活應(yīng)用導(dǎo)數(shù)研究與函數(shù)單調(diào)性有關(guān)的問(wèn)題,并能運(yùn)用數(shù)形結(jié)合的思想方法.三、學(xué)習(xí)過(guò)程1.復(fù)
【摘要】導(dǎo)數(shù)在實(shí)際問(wèn)題中的應(yīng)用目標(biāo)認(rèn)知學(xué)習(xí)目標(biāo):1.會(huì)從幾何直觀了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間,對(duì)多項(xiàng)式函數(shù)一般不超過(guò)三次.2.了解函數(shù)在某點(diǎn)取得極值的必要條件(導(dǎo)數(shù)在極值點(diǎn)兩端異號(hào))和充分條件();會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值,對(duì)多項(xiàng)式函數(shù)一般不超過(guò)三次.3.會(huì)求閉區(qū)間上函數(shù)的
2025-02-06 23:43
【摘要】知識(shí)點(diǎn)撥:利用導(dǎo)數(shù)求函數(shù)的極值例求下列函數(shù)的極值:1.xxxf12)(3??;2.xexxf??2)(;3..212)(2???xxxf分析:按照求極值的基本方法,首先從方程0)(??xf求出在函數(shù))(xf定義域內(nèi)所有可能的極值點(diǎn),然后按照函數(shù)極值的定義判斷在這些點(diǎn)處是否取得極值.解:1.函
【摘要】函數(shù)的極值【學(xué)習(xí)要求】了解函數(shù)極值的定義,會(huì)從幾何圖形直觀理解函數(shù)的極值與其導(dǎo)數(shù)的關(guān)系,增強(qiáng)自己的數(shù)形結(jié)合意識(shí);掌握利用導(dǎo)數(shù)求函數(shù)的極值的一般步驟.【提問(wèn)引入】請(qǐng)同學(xué)們觀察下圖.極值的概念:
【摘要】導(dǎo)數(shù)的概念及其幾何意義教學(xué)目標(biāo):1.導(dǎo)數(shù)的概念及幾何意義;2.求導(dǎo)的基本方法;3.導(dǎo)數(shù)的應(yīng)用.教學(xué)重點(diǎn):導(dǎo)數(shù)的綜合應(yīng)用;教學(xué)難點(diǎn):導(dǎo)數(shù)的綜合應(yīng)用.一.知識(shí)梳理1.導(dǎo)數(shù)的概念及幾何意義.2.求導(dǎo)的基本方法①定義法:??xf?=????xxfxxfxyx????????
【摘要】實(shí)際問(wèn)題中導(dǎo)數(shù)的意義一、學(xué)習(xí)要求:導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用二、學(xué)習(xí)目標(biāo)能運(yùn)用導(dǎo)數(shù)方法求解有關(guān)利潤(rùn)最大,用料最省,效率最高等最優(yōu)化問(wèn)題,體會(huì)導(dǎo)數(shù)在解決實(shí)際生活問(wèn)題中的作用。三、重點(diǎn)難點(diǎn)用導(dǎo)數(shù)方法解決實(shí)際生活中的問(wèn)題四、要點(diǎn)梳理解應(yīng)用題的基本程序是:讀題建模求解
【摘要】導(dǎo)數(shù)的幾何意義學(xué)習(xí)要求1.理解導(dǎo)數(shù)的幾何意義2.會(huì)用導(dǎo)數(shù)的定義求曲線的切線方程自學(xué)評(píng)價(jià)1、割線的斜率:已知)(xfy?圖像上兩點(diǎn)))(,(00xfxA,))(,(00xxfxxB????,過(guò)A,B兩點(diǎn)割線的斜率是_________,即曲線割線的斜率就是___________.2、函數(shù))(xfy?在點(diǎn)
【摘要】導(dǎo)數(shù)與函數(shù)的單調(diào)性教學(xué)過(guò)程:一.創(chuàng)設(shè)情景函數(shù)是客觀描述世界變化規(guī)律的重要數(shù)學(xué)模型,研究函數(shù)時(shí),了解函數(shù)的贈(zèng)與減、增減的快與慢以及函數(shù)的最大值或最小值等性質(zhì)是非常重要的.通過(guò)研究函數(shù)的這些性質(zhì),我們可以對(duì)數(shù)量的變化規(guī)律有一個(gè)基本的了解.下面,我們運(yùn)用導(dǎo)數(shù)研究函數(shù)的性質(zhì),從中體會(huì)導(dǎo)數(shù)在研究函數(shù)中的作用。二.新課講授1.問(wèn)題:圖(1),
【摘要】變化的快慢與變化率【例1】已知質(zhì)點(diǎn)M按規(guī)律s=2t2+3作直線運(yùn)動(dòng)(位移單位:cm,時(shí)間單位:s),當(dāng)t=2,Δt=,求ts??;(2)當(dāng)t=2,Δt=,求ts??;(3)求質(zhì)點(diǎn)M在t=2時(shí)的瞬時(shí)速度【例2】某一物體的運(yùn)動(dòng)規(guī)律為s=t3-t2+2t+5(其中s表示位移,t表
【摘要】第三章§2理解教材新知把握熱點(diǎn)考向應(yīng)用創(chuàng)新演練考點(diǎn)一考點(diǎn)二考點(diǎn)三看下面兩個(gè)問(wèn)題:(1)三角函數(shù)都是周期函數(shù),y=tanx是三角函數(shù),所以y=tanx是周期函數(shù);(2)循環(huán)小數(shù)是有理數(shù),2·是循環(huán)小數(shù),所以2&
2025-01-21 08:08