【摘要】第五章大數(shù)定律與中心極限定理§1大數(shù)定律第五章大數(shù)定律與中心極限定理2/8“概率”的概念是如何產(chǎn)生的AnnXpn??設(shè)次獨立重復(fù)試驗中事件發(fā)生的nA隨機(jī)變量頻率概率()PA“頻率穩(wěn)定性”的嚴(yán)格數(shù)學(xué)描述是什么怎樣定義極限limnnXp???次數(shù)為
2024-09-11 13:14
【摘要】1第五章大數(shù)定律和中心極限定理大數(shù)定律中心極限定理2本章引言:對應(yīng)于隨機(jī)試驗的一個結(jié)果w,由描述該結(jié)果的隨機(jī)變量序列X1,X2,?可得到一個數(shù)列X1(w),X2(w),?。不同試驗結(jié)果對應(yīng)
2025-03-03 17:36
【摘要】1,第17次課:大數(shù)定律中心極限定理Ⅰ,熟悉切貝謝夫不等式,會進(jìn)行概率的估計大數(shù)定律的實際意義和數(shù)學(xué)表現(xiàn)形式:大量隨機(jī)現(xiàn)象中頻率和平均結(jié)果的穩(wěn)定性中心極限定理的實際意義和數(shù)學(xué)表現(xiàn)形式:正態(tài)分布的普遍性...
2024-11-18 23:56
【摘要】第5章大數(shù)定律與中心極限定理一、填空題:,方差,則由切比雪夫不等式有.,對于,寫出所滿足的切彼雪夫不等式,并估計.3.設(shè)隨機(jī)變量相互獨立且同分布,而且有,,令,則對任意給定的,由切比雪夫不等式直接可得.解:切比雪夫不等式指出:如果隨機(jī)變量滿足:與
2025-08-13 09:05
【摘要】1第五章大數(shù)定律和中心極限定理§1大數(shù)定律??????????22222,0,5.11XEXDXPXPX????????????????
2025-02-20 23:53
【摘要】第四章大數(shù)定律與中心極限定理第1頁§特征函數(shù)§大數(shù)定律§隨機(jī)變量序列的兩種收斂性§中心極限定理第四章大數(shù)定律與中心極限定理第四章大數(shù)定律與中心極限定理第2頁§特征函數(shù)特征函
2024-09-14 16:59
【摘要】Chapter4(4),大數(shù)定理與中心極限定理,,,,,教學(xué)要求:,了解切比雪夫不等式;,2.了解切比雪夫定理和伯努利定理;,了解林德伯格-列維定理(獨立同分布的中心極限定理)和棣莫佛-拉普拉斯定理(...
2024-11-17 00:12
【摘要】中心極限定理的內(nèi)涵和應(yīng)用在概率論與數(shù)理統(tǒng)計中,中心極限定理是非常重要的一節(jié)內(nèi)容,而且是概率論與數(shù)理統(tǒng)計之間承前啟后的一個重要紐帶。中心極限定理是概率論中討論隨機(jī)變量和的分布以正態(tài)分布為極限的一組定理。這組定理是數(shù)理統(tǒng)計學(xué)和誤差分析的理論基礎(chǔ),指出了大量隨機(jī)變量之和近似服從于正態(tài)分布的條件。故為了深化同學(xué)們的理解并掌握其重要性,本組組員共同努力,課外深入學(xué)習(xí),詳細(xì)地介紹了中心極限定理的內(nèi)涵及其
2024-08-27 15:27
【摘要】§4.2中心極限定理,定理1獨立同分布的中心極限定理,設(shè)隨機(jī)變量序列,相互獨立,,服從同一分布,且有期望和方差:,則對于任意實數(shù)x,,注記,則Yn為,的標(biāo)準(zhǔn)化隨機(jī)變量,即n足夠大時,Yn的分布函數(shù)近似...
【摘要】題目:中心極限定理及意義課程名稱:概率論與數(shù)理統(tǒng)計專業(yè)班級:成員組成:聯(lián)系方式:2012年5月25日摘要:本文從隨機(jī)變量序列的各種收斂與他們的關(guān)系談起,通過對概率經(jīng)典定理——中心極限定理在獨立同分布和
2025-03-06 22:41
【摘要】1有意正數(shù)證明對任且獨立同分布設(shè)隨機(jī)變量??,,2,1,)(,0)(,,,,,221??????kXDXEXXXkkn解.11lim212???????????????nkknXnP是相互獨立的,因為??,,,,21nXXX也是相互獨立的,所以??,,
2025-07-14 17:20
【摘要】第四章隨機(jī)變量序列的極限分布,二項分布律的泊松定理,用EXCEL計算的結(jié)果,獨立隨機(jī)變量序列累加和的中心極限定理,中心極限定理,,解:,,解:,解:,,這時,,D-L定理的應(yīng)用,解:,,解:,根據(jù)中心...
【摘要】引言迄今為止,人們已發(fā)現(xiàn)很多大數(shù)定律(lawsoflargenumbers),所謂大數(shù)定律,簡單地說,就是大量數(shù)目的隨機(jī)變量所呈現(xiàn)出的規(guī)律,這種規(guī)律一般用隨機(jī)變量序列的某種收斂性來刻劃。本章僅介紹幾個最基本的大數(shù)定律。大量隨機(jī)現(xiàn)象的平均結(jié)果實際上是與各個個別隨機(jī)現(xiàn)象的特征無關(guān),并且?guī)缀醪辉偈请S機(jī)的了
2025-03-11 00:51
【摘要】信息與計算科學(xué)《概率論與數(shù)理統(tǒng)計》教案第四章極限定理一教學(xué)目標(biāo)與要求掌握幾個大數(shù)定律(馬爾可夫大數(shù)定律,切比曉夫大數(shù)定律,Bernoulli大數(shù)定律,辛欽大數(shù)定律)。二重點和難點重點:幾個大數(shù)定律的內(nèi)容,中心極限定理的內(nèi)容及其應(yīng)用.難點:中心極限定理的應(yīng)用三教學(xué)內(nèi)容§一.依分布收斂定義:隨機(jī)變量序列,對應(yīng)的分布函數(shù)列是,如果存在分
2024-09-27 13:11
【摘要】第五章大數(shù)定律及中心極限定理習(xí)題課二、主要內(nèi)容三、典型例題一、重點與難點一、重點與難點中心極限定理及其運用.證明隨機(jī)變量服從大數(shù)定律.大數(shù)定律二、主要內(nèi)容中心極限定理定理一定理二定理三定理一的另一種表示定理一
2025-02-21 01:29