【正文】
被當做一種耦合非線性波動用于替代Black–Scholes期權(quán)定價模型。此外,我們通過選取不同的參數(shù)展示了他們的動態(tài)行為。此外,這些結(jié)果可能會進一步刺激相關(guān)研究,在金融市場和其他相關(guān)的非線性科學領(lǐng)域,矢量金融畸形波現(xiàn)象也有潛在的應用價值研究方案:本論文主要基于非線性偏微分方程求解方法,探討金融畸形波的數(shù)學模型與求解。首先,我們會總結(jié)有關(guān)文獻,對金融畸形波產(chǎn)生的背景,原理進行介紹;然后,針對金融市場中的價格問題,我們會給出具體的數(shù)學模型來描述金融畸形波,最后求解該模型并用計算機進行模擬。主要參考文獻:[1]Russell J S. Report on waves. Report of the 14th Meeting of the British Association for the Advancement of Science. London :1844 ,311390[2]Korteweg D J, de Vries G. On the change of rorm of form of long waves advancing in a rectangular canal and on a new type of long stationary . Mag. Ser., 1895, 39(5): 422443[3]Zabusky N J, Kruskal M D. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 1965, 15: 240243[4]Draper L. Freak waves[J ]. Marine Observer , 1965 , 35: 193 195.[5] Mallory J K. Abnormal waves on the south east coast[J ]. South Africa. Int. Hydrog. Rev. , 1974 , 51: 99 129.[6] ILavrenov. The wave energy concentration at Agulhas current of South Africa[J ]. Nat. Hazards , 1998 , 117 127.[7] Sand S E, Ottesen N E, K linting P , et al . Freak wave kinematics[M]. Water Wave K inematics. K luwer , Dordrecht , 1990 , 535 54[8] Paul C Liu , N Mori