【摘要】三角函數(shù)與三角恒等變換(A)一、填空題(本大題共14小題,每題5分,,請把答案寫在指定位置上)1.半徑是r,圓心角是α(弧度)的扇形的面積為________.2.若,則tan(π+α)=________.3.若α是第四象限的角,則π-α是第________象限的角.4.適合的實數(shù)m的取值范圍是_________.5.若tanα=3,則cos2α+3sin2α=
2024-09-02 20:29
【摘要】三角函數(shù)的恒等變形與求值寶應(yīng)中學(xué)高三數(shù)學(xué)文科備課組一、要點掃描?1、了解用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式的過程。?2、能利用已知條件,正確合理地運用三角恒等變形公式進行三角函數(shù)式的化簡、求值及恒等式證明。二、課前熱身?1.若,則
2025-01-15 01:26
【摘要】 優(yōu)勝教育內(nèi)部資料張敬敬必修4三角函數(shù)三角恒等變換綜合練習(xí)一、選擇題(本大題共10小題,每小題3分,共30分,在每小題給出的四個選項中,只有一項是最符合題目要求的.)1.為終邊上一點,則()A、 B、C、 D、2.下列函數(shù)中,以為周期且在區(qū)間上為增函數(shù)的函數(shù)是(
2025-05-12 02:03
【摘要】范文范例參考第4講簡單的三角恒等變換★知識梳理1.升降冪公式:;2.同角正余弦化積公式,其中;=★重難點突破:掌握利用三角恒等變換處理三角式化簡,求值與證明等問題。:確定三角變換的方向及三角公式的合理運用.:通過審題分析已知條件和待求結(jié)論之間角的差異,建立聯(lián)系,使問題獲解。(1)三角變換的基本思
2025-08-13 19:50
【摘要】.三角函數(shù)題型分類總結(jié)一.求值1、===2、(1)(07全國Ⅰ)是第四象限角,,則(2)(09北京文)若,則.(3)(09全國卷Ⅱ文)已知△ABC中,,則.(4)是第三象限角,,則==3、(1)(07陜西)已知則=
2024-09-03 18:49
【摘要】2011年——2016年高考題專題匯編專題4三角函數(shù)、三角恒等變換三角恒等變換1、(16年全國3文)若,則cos2θ=(A)(B)(C)(D)2、(16年全國3理)若,則(A)(B)(C)1(D)3、(16年全國2文)函數(shù)的最大值為(A)4(B)5 (C)6 (D)
2025-05-26 12:18
2025-08-09 22:13
【摘要】三角函數(shù)圖像平移變換由y=sinx的圖象變換出y=sin(ωx+)的圖象一般有兩個途徑,只有區(qū)別開這兩個途徑,才能靈活進行圖象變換。利用圖象的變換作圖象時,提倡先平移后伸縮,但先伸縮后平移也經(jīng)常出現(xiàn)無論哪種變形,請切記每一個變換總是對字母x而言,即圖象變換要看“變量”起多大變化,而不是“角變化”多少。途徑一:先平移變換再周期變換(伸縮變換)先將y
2025-05-13 05:41
【摘要】三角函數(shù)恒等變形的基本策略。(1)常值代換:特別是用“1”的代換,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。(2)項的分拆與角的配湊。如分拆項:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配湊角:α=(α+β)-β,β=-等。(3)降次與升次。(4)化弦(切)法。(4)引入輔助角。asinθ+bco
2025-08-11 20:23
【摘要】二倍角公式 sin2A=2sinA?cosA cos2A=cos^2A-sin^2A=1-2sin^2A=2cos^2A-1 tan2A=(2tanA)/(1-tan^2A)三倍角公式 ????sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα
2024-09-02 20:30
【摘要】..三角函數(shù)與三角恒等變換(A)一、填空題(本大題共14小題,每題5分,,請把答案寫在指定位置上)1.半徑是r,圓心角是α(弧度)的扇形的面積為________.2.若,則tan(π+α)=________.3.若α是第四象限的角,則π-α是第________象限的角.4.適合的實數(shù)m的取值范圍是_________.5.
2024-09-14 22:59
【摘要】新課標(biāo)高中一輪總復(fù)習(xí)理數(shù)理數(shù)第四單元三角函數(shù)與平面向量第22講簡單的三角恒等變換能運用同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式、兩角和與差的三角公式進行簡單的三角恒等變換.△ABC中,已知sin(A-B)cosB+cos(A-B)sinB≥1,則△ABC是()A
2025-01-24 01:05
【摘要】第六節(jié)簡單的三角恒等變換考綱點擊能運用兩角和與差的正弦、余弦、正切公式以及二倍角的正弦、余弦和正切公式進行簡單的恒等變換(包括導(dǎo)出積化和差、和差化積、半角公式,但對這三組公式不要求記憶).熱點提示恒等變換,進而考查三角函數(shù)的圖象和性質(zhì)是高考的熱點內(nèi)容.、向量為載體考查恒等變形能力以及運用正、余弦定理判定
2025-01-13 07:28
【摘要】第六節(jié)簡單的三角恒等變換基礎(chǔ)梳理1、用于三角恒等變換的公式主要有:(1)____________________________,運用它們可實現(xiàn)弦函數(shù)之間、弦函數(shù)與切函數(shù)之間的互化,其主要功能是變名;(2)________,運用它們可實現(xiàn)與一個銳角有關(guān)的不同角之間的轉(zhuǎn)化,其主要功能是變角;(3)_____________________,它
2025-01-15 01:24