【摘要】三角函數(shù)計(jì)算與三角恒等變換審稿鎮(zhèn)江市教研室黃厚忠莊志紅江蘇省鎮(zhèn)江第一中學(xué)唐毅本節(jié)講座知識(shí)目錄1234本節(jié)講座知識(shí)目錄三角函數(shù)計(jì)算、三角恒等變換的高考要求三角函數(shù)計(jì)算、三角恒等變換的基本策略三角函數(shù)各公式間的推導(dǎo)和常見(jiàn)題型65三角函數(shù)計(jì)算、三角恒等變換典型例題分析三角函
2024-08-27 23:41
【摘要】三角函數(shù)與三角恒等變換(A)一、填空題(本大題共14小題,每題5分,,請(qǐng)把答案寫(xiě)在指定位置上)1.半徑是r,圓心角是α(弧度)的扇形的面積為_(kāi)_______.2.若,則tan(π+α)=________.3.若α是第四象限的角,則π-α是第________象限的角.4.適合的實(shí)數(shù)m的取值范圍是_________.5.若tanα=3,則cos2α+3sin2α=
2024-09-02 20:29
【摘要】設(shè)計(jì):高一年級(jí)數(shù)學(xué)備課組授課教師:李洪偉1、降冪擴(kuò)角公式3、輔助角公式22cos1cos)3(22cos1sin)2(2sin21cossin)1(22????????????2、升冪縮角公式1cos2sin21sincos2cos
2024-09-05 08:55
【摘要】.,....三角函數(shù)與解三角形高考真題1.【2015湖南理17】設(shè)的內(nèi)角,,的對(duì)邊分別為,,,,且為鈍角.(1)證明:;(2)求的取值范圍.2.【2014遼寧理17】(本小題滿分12分)在中,內(nèi)角A,B,C的對(duì)邊a,b,c,且,已知,
2025-06-03 12:49
【摘要】 優(yōu)勝教育內(nèi)部資料張敬敬必修4三角函數(shù)三角恒等變換綜合練習(xí)一、選擇題(本大題共10小題,每小題3分,共30分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是最符合題目要求的.)1.為終邊上一點(diǎn),則()A、 B、C、 D、2.下列函數(shù)中,以為周期且在區(qū)間上為增函數(shù)的函數(shù)是(
2025-05-12 02:03
【摘要】1.兩角和與差的三角函數(shù);;。2.二倍角公式;;。3.三角函數(shù)式的化簡(jiǎn)常用方法:①直接應(yīng)用公式進(jìn)行降次、消項(xiàng);②切割化弦,異名化同名,異角化同角;③三角公式的逆用等。(2)化簡(jiǎn)要求:①能求出值的應(yīng)求出值;②使三角函數(shù)種數(shù)盡量少;③使項(xiàng)數(shù)盡量少;④盡量使分母不含三角函數(shù);⑤盡量使被開(kāi)方數(shù)不含三角函數(shù)。(1)降冪公式;;。(2)輔助角公式,。
2025-05-11 05:42
【摘要】.,....1、已知角的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊在直線上,則( ?。ˋ)(B)(C)(D)2、設(shè),則(A) (B) (C) (D)3、若的值等于( ?。〢.2 B.3 C.4
2025-05-25 22:39
【摘要】22.設(shè)的內(nèi)角所對(duì)的邊長(zhǎng)分別為,且.(Ⅰ)求的值;(Ⅱ)求的最大值.解析:(Ⅰ)在中,由正弦定理及可得即,則;(Ⅱ)由得當(dāng)且僅當(dāng)時(shí),等號(hào)成立,故當(dāng)時(shí),的最大值為.,,.(Ⅰ)求的值;(Ⅱ)設(shè)的面積,求的長(zhǎng).解:(Ⅰ)由,得,由,得.所以. 5分(Ⅱ)由得,由(Ⅰ)知,故, 8分又,故,.所以. 10分(
2025-08-10 03:58
【摘要】年級(jí)高一學(xué)科數(shù)學(xué)內(nèi)容標(biāo)題簡(jiǎn)單的三角函數(shù)恒等變換編稿老師褚哲一、學(xué)習(xí)目標(biāo):1.了解積化和差、和差化積的推導(dǎo)過(guò)程,能初步運(yùn)用公式進(jìn)行和、積互化.2.能應(yīng)用公式進(jìn)行三角函數(shù)的求值、化簡(jiǎn)、證明.二、重點(diǎn)、難點(diǎn):重點(diǎn):三角函數(shù)的積化和差與和差化積公式,能正確運(yùn)用此公式進(jìn)行簡(jiǎn)單的三角函數(shù)式的化簡(jiǎn)、求值和恒等式的證明.難點(diǎn):公式的靈活應(yīng)
2024-08-06 09:28
【摘要】1、已知角的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊在直線上,則( ?。ˋ)(B)(C)(D)2、設(shè),則(A) (B) (C) (D)3、若的值等于( ?。〢.2 B.3 C.4 D.64、若,則A. B. C. D.5、函數(shù)是( ) A.最小正周期為的奇函數(shù)B.最小正周期為的偶函數(shù)
【摘要】三角函數(shù)的恒等變形與求值寶應(yīng)中學(xué)高三數(shù)學(xué)文科備課組一、要點(diǎn)掃描?1、了解用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式的過(guò)程。?2、能利用已知條件,正確合理地運(yùn)用三角恒等變形公式進(jìn)行三角函數(shù)式的化簡(jiǎn)、求值及恒等式證明。二、課前熱身?1.若,則
2025-01-15 01:26
2025-08-09 22:13
【摘要】新課標(biāo)全國(guó)卷Ⅰ文科數(shù)學(xué)匯編三角函數(shù)、解三角形1、選擇題【2018,8】已知函數(shù),則A.的最小正周期為π,最大值為3B. 的最小正周期為π,最大值為4C. 的最小正周期為,最大值為3D.的最小正周期為,最大值為4【2018,11】已知角的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊上有兩點(diǎn),,且,則A. B. C. D.【2017
2025-05-25 04:35
【摘要】三角函數(shù)部分高考題,只需將函數(shù)的圖像(A)A.向左平移個(gè)長(zhǎng)度單位 B.向右平移個(gè)長(zhǎng)度單位C.向左平移個(gè)長(zhǎng)度單位 D.向右平移個(gè)長(zhǎng)度單位,則的最大值為(B)A.1 B. C. D.23.(D)?。ǎ粒 。ǎ拢 。ǎ茫 。ǎ模?,則的取值范圍是:(C)(A) ?。ǎ拢 。ǎ茫 ?/span>
2025-08-10 03:41