【摘要】圓錐曲線的幾何性質(zhì)xyoF11F2AB一、橢圓的幾何性質(zhì)(以+=1(a﹥b﹥0)為例) 1、⊿ABF2的周長為4a(定值)證明:由橢圓的定義即 2、焦點⊿PF1F2中:xyoF1F22P(1)S⊿PF1F2=(2)(S⊿PF1F2)max=bc(3)當P在短軸上時,∠F1PF2最大證明:
2024-09-15 04:45
【摘要】一、橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應準線相離.4.以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.5.若在橢圓上,則過的橢圓的切線方程是.6.若在橢圓外,則過Po作橢圓的兩條切線
2024-08-04 18:05
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2024-09-04 00:15
【摘要】 圓錐曲線的定義、方程與性質(zhì)]1.設拋物線的頂點在原點,準線方程為x=-2,則拋物線的方程是( )A.y2=-8xB.y2=8xC.y2=-4xD.y2=4x2.橢圓+=1的離心率為( )A.B.C.D.3.雙曲線2x2-y2=8的實軸長是( )A.2B.2C.4D.44.過拋物線y2=2px(p0)的焦點F的直
2024-09-02 20:57
【摘要】......高考數(shù)學圓錐曲線部分知識點梳理1、方程的曲線:在平面直角坐標系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關系:(1)曲線上的點的坐標都是這
2025-05-22 05:07
【摘要】圓錐曲線一、知識點1、曲線和方程2、橢圓定義(第一定義、第二定義)3、橢圓標準方程(1、2)與參數(shù)方程4、橢圓性質(zhì):圖像特點、范圍、頂點、離心率、對稱性、準線、焦半徑、通徑等5、橢圓與直線的位置關系二、雙曲線1、定義(第一、第二定義)2、標準方程3、性質(zhì)“圖像、范圍、頂點、離心率、對稱性、準線、漸近線、焦半徑、通徑等4、雙曲線與直
【摘要】圓錐曲線的性質(zhì)及推廣應用江西省撫州一中:張志恒目錄1引言 32圓錐曲線的分類,性質(zhì)及應用 4圓錐曲線的分類 4圓錐曲線的性質(zhì) 5圓錐曲線在生活中的應用 83圓錐曲線性質(zhì)的推廣應用 11直線與圓錐曲線的位置關系的實際應用 11數(shù)學問題在圓錐曲線中的推廣 13
2024-09-04 12:41
【摘要】......中點弦問題專題練習 一.選擇題(共8小題)1.已知橢圓,以及橢圓內(nèi)一點P(4,2),則以P為中點的弦所在直線的斜率為( ?。.B.C.2D.﹣22.已知A(
2025-05-12 00:04
【摘要】軌跡方程經(jīng)典例題一、軌跡為圓的例題:1、必修2課本P124B組2:長為2a的線段的兩個端點在軸和軸上移動,求線段AB的中點M的軌跡方程:必修2課本P124B組:已知M與兩個定點(0,0),A(3,0)的距離之比為,求點M的軌跡方程;(一般地:必修2課本P144B組2:已知點M(,)與兩個定點的距離之比為一個常數(shù);討論點M(,)的軌跡方程(分=1,與1進行討論)
【摘要】WORD資料可編輯圓錐曲線綜合應用及光學性質(zhì)(通用)一、選擇題(本大題共12小題,每小題5分,共60分)1.二次曲線,時,該曲線的離心率e的取值范圍是 () A. B. C. D.2.我國發(fā)射的“神舟3號”宇宙飛船的運行軌道是以地球的中心為
2024-08-04 03:56
【摘要】......圓錐曲線經(jīng)典題型 一.選擇題(共10小題)1.直線y=x﹣1與雙曲線x2﹣=1(b>0)有兩個不同的交點,則此雙曲線離心率的范圍是( )A.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪
2024-08-04 02:10
【摘要】....圓錐曲線經(jīng)典題型 一.選擇題(共10小題)1.直線y=x﹣1與雙曲線x2﹣=1(b>0)有兩個不同的交點,則此雙曲線離心率的范圍是( ?。〢.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪(,+∞)2.已知M(x0,y0)是雙曲線C:=1上的一點,F(xiàn)
2024-08-03 07:21
【摘要】......圓錐曲線32題1.如圖所示,,分別為橢圓:()的左、右兩個焦點,,為兩個頂點,已知橢圓上的點到,兩點的距離之和為. (1)求橢圓的方程;(2)過橢圓的焦點作的平行線交
2025-05-11 04:35
【摘要】利用反證法證明圓錐曲線的光學性質(zhì)迤山中學數(shù)學組賈浩利用反證法證明圓錐曲線的光學性質(zhì)反證法又稱歸謬法,是高中數(shù)學證明中常用的一種方法。利用反證法證明問題的思路為:首先在原命題的條件下,假設結論的反面成立,然后推理出明顯矛盾的結果,從而說明假設不成立,則原命題得證。在光的折射定律中,從點發(fā)出的光經(jīng)過直線折射后,反射光
2024-08-02 15:52
【摘要】圓錐曲線的方程與性質(zhì)1.橢圓(1)橢圓概念平面內(nèi)與兩個定點、的距離的和等于常數(shù)2(大于)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離2c叫橢圓的焦距。若為橢圓上任意一點,則有。橢圓的標準方程為:()(焦點在x軸上)或()(焦點在y軸上)。注:①以上方程中的大小,其中;②在和兩個方程中都有的條件,要分清焦點的位置,只要看和的分母的大小。例如橢圓(,,)
2024-07-30 02:15