freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

數(shù)列的綜合應(yīng)用-在線瀏覽

2024-07-29 04:17本頁(yè)面
  

【正文】 =8.a1,1a1,2a1,3a1,4…a2,1a2,2a2,3a2,4…a3,1a3,2a3,3a3,4…a4,1a4,2a4,3a4,4………………求數(shù)列{an,2}的通項(xiàng)公式.【解題導(dǎo)引】(1)求出第n行(n≥3)從左向右的第3個(gè)數(shù)為原數(shù)列的第幾項(xiàng),再求解.(2)構(gòu)造方程組求出等差數(shù)列的公差與等比數(shù)列的公比.(2)設(shè)第一行組成的等差數(shù)列的公差是d,各列依次組成的等比數(shù)列的公比是q(q0),則a2,3=qa1,3=q(1+2d)?q(1+2d)=6,a3,2=q2a1,2=q2(1+d)?q2(1+d)=8,解得d=1,q=,2=2?an,2=22n1=2n.【規(guī)律方法】數(shù)列中常見(jiàn)的圖表問(wèn)題及解題關(guān)鍵(1)分組型:數(shù)列的通項(xiàng)公式已知,.(2)混排型:,將所求問(wèn)題所在行或列的基本量求出.(3)遞推公式型:圖表或數(shù)陣是按某種遞推關(guān)系得到的,解決這類問(wèn)題的關(guān)鍵是求出遞推公式,再由遞推公式求出通項(xiàng)公式.【變式訓(xùn)練】(2016北京模擬)已知an=( )n,把數(shù)列{an}的各項(xiàng)排列成如下的三角形形狀.a1a2 a3 a4a5 a6 a7 a8 a9………………………記A(m,n)表示第m行的第n個(gè)數(shù),則A(10,12)= (  )2.(2016由自然數(shù)的立方構(gòu)成下列數(shù)組:{03,13},{13,23},{23,33},{33,43},…,記第n組中后一個(gè)數(shù)與前一個(gè)數(shù)的差為Bn,則An+Bn=______.【解析】由題意知,前n組共有1+3+5+…+(2n1)=n2個(gè)數(shù),所以第n1組的最后一個(gè)數(shù)為(n1)2,第n組的第一個(gè)數(shù)為(n1)2+1,第n組共有2n1個(gè)數(shù),所以根據(jù)等差數(shù)列的前n項(xiàng)和公式可得3.(2016日照模擬)某大學(xué)張教授年初向銀行貸款2萬(wàn)元用于購(gòu)車,銀行貸款的年利息為10%,按復(fù)利計(jì)算(即本年的利息計(jì)入次年的本金生息).若這筆款要分10年等額還清,每年年初還一次,并且以貸款后次年年初開始?xì)w還,問(wèn)每年應(yīng)還多少元?【規(guī)范解答】設(shè)每年還款x元,需10年還清,那么各年還款利息情況如下:第10年付款x元,這次還款后欠款全部還清。第8年付款x元,過(guò)2年欠款全部還清時(shí),所付款連同利息之和為x(1+10%)2元。成都模擬)《張丘建算經(jīng)》卷上第22題為:今有女善織,日益功疾,且從第2天起,每天比前一天多織相同量的布,若第1天織5尺布,現(xiàn)在一月(按30天計(jì))共織390尺布,則每天比前一天多織______尺布. (  )“十二五”(2011年至2015年)期間本地區(qū)主要污染物排放總量控制要求,原計(jì)劃“十二五”,.(1)按原計(jì)劃,“十二五”期間該城市共排放SO2約多少萬(wàn)噸?(2)該城市為響應(yīng)“十八大”提出的建設(shè)“美麗中國(guó)”的號(hào)召,自2013年起,SO2的年排放量每年比上一年減少的百分率為p,為使2020年這一年SO2的年排放量控制在6萬(wàn)噸以內(nèi),求p的取值范圍.答:按原計(jì)劃,“十二五”.答:SO2的年排放量每年減少的百分率p的取值范圍為(%,1).考向四 數(shù)列與函數(shù)、不等式的綜合問(wèn)題【考情快遞】【考題例析】命題方向1:數(shù)列與函數(shù)的綜合問(wèn)題【典例4】(2014全國(guó)卷Ⅱ)已知數(shù)列{an}滿足a1=1,an+1=3an+1. (1)證明 是等比數(shù)列,并求{an}的通項(xiàng)公式.(2)證明: 【技法感悟】(1)數(shù)列是一類特殊的函數(shù),它的圖象是一群孤立的點(diǎn)。濟(jì)南模擬)已知等比數(shù)列{an}的首項(xiàng)a1=2014,公比為q= ,記bn=a1a2a3…an,則bn達(dá)到最大值時(shí),n的值為 (  ) 2.(2016濱州模擬)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=2Sn+1(n∈N*),等差數(shù)列{bn}中b2=5,且公差d=2.(1)求數(shù)列{an},{bn}的通項(xiàng)公式.(2)是否存在正整數(shù)n,使得a1b1+a2b2+…+anbn60n?若存在,求出n的最小值,若不存在,請(qǐng)說(shuō)明理由.【解析】(1)a1=1,an+1=2Sn+1,所以當(dāng)n≥2時(shí),an=2Sn1+1,相減得:an+1=3an(n≥2),又a2=2a1+1=3,所以a2=3a1,所以數(shù)列{an}是以1為首項(xiàng),3為公比的等比數(shù)列,an=3n1.又b2=b1+d=5,所以b1=3,bn=2n+1.(2)an3n1,令Tn=a1b1+a2b2+…+anbn=31+53+732+…+(2n1)3n2+(2n+1)3n1①,3Tn=33+532+733+…+(2n1)3n1+(2n+1)3n②,①②得:2Tn=31+2(3+32+…+3n1)(2n+1)3n,所以Tn=n3n,所以n3n60n,即3n60,當(dāng)n≤3時(shí),3n60,當(dāng)n≥4時(shí),3n60,所以存在n的最小值為4.課時(shí)提升作業(yè) 1.(2014當(dāng){an}為遞增數(shù)列時(shí),a10,0q1或a10,q1.因此,“q1”是“{an}為遞增數(shù)列”的既不充分也不必要條件.【加固訓(xùn)練】(2016聊城模擬)已知a,1,c成等差數(shù)列,a2,1,c2成等比數(shù)列,則log(a+c)(a2+c2)= (  ) 【解析】+c=2,a2c2=1,ac=177。煙臺(tái)模擬)《萊因德紙草書》:把100個(gè)面包分給5個(gè)人,使每人所得成等差數(shù)列,且使較大的三份之和的17是較小的兩份之和,問(wèn)最小的一份為 (  ) 【解析】,ad,a,a+d,a+2d(其中
點(diǎn)擊復(fù)制文檔內(nèi)容
電大資料相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1