【摘要】三角形培優(yōu)練習(xí)題1已知:AB=4,AC=2,D是BC中點(diǎn),AD是整數(shù),求ADADBC2已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點(diǎn),求證:∠1=∠2ABCDEF213已知:∠1=∠2,CD=DE,EF//AB,求證:EF=ACBAC
2024-08-04 20:56
【摘要】........模塊一:基本輔助線1.如圖,已知AC=BD,AD⊥AC,BC⊥BD,求證:AD=BC.2.如圖,AB=AE,∠ABC=∠AED,BC=ED,點(diǎn)F是CD的中點(diǎn),(1)求證:AF⊥CD.(2)在你連接BE后,還能得出什
2025-05-11 07:41
【摘要】全等三角形培優(yōu)訓(xùn)練題11、已知正方形ABCD中,E為對(duì)角線BD上一點(diǎn),過E點(diǎn)作EF⊥BD交BC于F,連接DF,G為DF中點(diǎn),連接EG,CG.(1)直接寫出線段EG與CG的數(shù)量關(guān)系;(2)將圖1中△BEF繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)45o,如圖2所示,取DF中點(diǎn)G,連接EG,CG.你在(1)中得到的結(jié)論是否發(fā)生變化?寫出你的猜想并加以證明.(3)將圖1中△BEF繞B點(diǎn)旋轉(zhuǎn)任
2025-05-11 07:39
【摘要】八上全等模型匯編(學(xué)而思)13
2025-05-25 20:38
【摘要】第一篇:全等三角形培優(yōu)專題訓(xùn)練 做最適合你的數(shù)學(xué)培訓(xùn) 八年級(jí)數(shù)學(xué)培優(yōu)專題訓(xùn)練 (二)探索三角形全等的條件 1、一張長(zhǎng)方形紙片沿對(duì)角線剪開,得到兩張三角形紙片,再將這兩張紙片擺成如下圖形式,使點(diǎn)...
2024-10-24 20:58
【摘要】1探索三角形全等的條件練習(xí)題1、已知AD是⊿ABC的中線,BE⊥AD,CF⊥AD,問BE=CF嗎?說明理由。2、已知AC=BD,AE=CF,BE=DF,問AE∥CF嗎?3、已知AB=CD,BE=DF,AE=CF,問AB∥
2025-01-24 21:37
【摘要】1FEDCBA三角形全等習(xí)題精選(1)1.下列說法:①所有的等邊三角形都全等②斜邊相等的直角三角形全等③頂角和腰長(zhǎng)對(duì)應(yīng)相等的等腰三角形全等④有兩個(gè)銳角相等的直角三角形全等其中正確的個(gè)數(shù)是()A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè),AB平分∠
2025-02-26 09:49
【摘要】第十二章全等三角形第Ⅰ卷(選擇題共30分)一、選擇題(每小題3分,共30分)()2.如圖所示,a,b,c分別表示△ABC的三邊長(zhǎng),則下面與△ABC一定全等的三角形是( ?。┑?題圖
2025-05-11 07:40
【摘要】說課材料制作人:長(zhǎng)葛市天隆學(xué)校周慧敏全等三角形是八年級(jí)上冊(cè)數(shù)學(xué)教材第十三章第一節(jié)的教學(xué)內(nèi)容。本節(jié)課是“全等三角形”的開篇,也是進(jìn)一步學(xué)習(xí)其它圖形的基礎(chǔ)之一。通過本章的學(xué)習(xí),可以豐富和加深學(xué)生對(duì)已學(xué)圖形的認(rèn)識(shí),同時(shí)為學(xué)習(xí)其它圖形知識(shí)打好基礎(chǔ)。一、說教材本節(jié)教材在編排上意在通過全等圖案引入新課教學(xué),在
2024-09-14 14:38
【摘要】......全等三角形相關(guān)模型總結(jié)一、角平分線模型(一)角平分線的性質(zhì)模型輔助線:過點(diǎn)G作GE⊥射線ACA、例題1、如圖,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么點(diǎn)D到直線A
2024-08-05 04:30
【摘要】全等三角形的判定1.如圖,已知AC和BD相交于O,且BO=DO,AO=CO,下列判斷正確的是( ?。〢.只能證明△AOB≌△COD B.只能證明△AOD≌△COBC.只能證明△AOB≌△COB D.能證明△AOB≌△COD和△AOD≌△COB2.已知△ABC的六個(gè)元素,下面甲、乙、丙三個(gè)三角形中和△ABC全等的圖形是(?。〢.甲
2025-05-12 07:11
【摘要】全等三角形證明方法中輔助線做法1、截長(zhǎng)補(bǔ)短通過添加輔助線利用截長(zhǎng)補(bǔ)短,從而達(dá)到改變線段之間的長(zhǎng)短,達(dá)到構(gòu)造全等三角形的條件1.如圖1,在△ABC中,∠ABC=60°,AD、CE分別平分∠BAC、∠ACB.求證:AC=AE+CD. 分析:要證AC=AE+CD,AE、CD不在同一直線上.故在AC上截取AF=AE,則只要證明
【摘要】2016專題:《全等三角形證明》1.已知:D是AB中點(diǎn),∠ACB=90°,求證:DABC2.已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點(diǎn),求證:∠1=∠2ABCDEF213.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求證:AE=AD+BE4.如圖,四邊形ABCD中
【摘要】精品資源第19課三角形與全等三角形知識(shí)點(diǎn):三角形,三角形的角平分線,中線,高線,三角形三邊間的不等關(guān)系,三角形的內(nèi)角和,三角形的分類,全等形,全等三角形及其性質(zhì),三角形全等判定大綱要求1.了解全等形,全等三角形的概念和性質(zhì),逆命題和逆定理的概念,理解三角形,三角形的頂點(diǎn),邊,內(nèi)角,外角,角平分線,中線和高線,線段中垂線等概念。2.理解三角形的任意兩邊之和大于第
2025-06-03 12:49
【摘要】三角形、全等三角形、軸對(duì)稱三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂
2024-09-03 01:22