【摘要】解析幾何中的定點(diǎn)和定值問(wèn)題【教學(xué)目標(biāo)】學(xué)會(huì)合理選擇參數(shù)(坐標(biāo)、斜率等)表示動(dòng)態(tài)圖形中的幾何對(duì)象,探究、證明其不變性質(zhì)(定點(diǎn)、定值等),體會(huì)“設(shè)而不求”、“整體代換”在簡(jiǎn)化運(yùn)算中的作用.【教學(xué)難、重點(diǎn)】解題思路的優(yōu)化.【教學(xué)方法】討論式【教學(xué)過(guò)程】一、基礎(chǔ)練習(xí)1、過(guò)直線上動(dòng)點(diǎn)作圓的切線,則兩切點(diǎn)所在直線恒過(guò)一定點(diǎn).此定點(diǎn)的坐標(biāo)為_(kāi)________.【答案】【解
2025-08-05 18:55
【摘要】主講人對(duì)外經(jīng)貿(mào)大學(xué)附中沈海英立體幾何中的定值問(wèn)題第一課:立體幾何中定值問(wèn)題概述王秀彩特級(jí)教師工作室高中的立體幾何教學(xué)中,立體幾何圖形在變化過(guò)程中,其中某些幾何元素的幾何量保持不變,或幾何元素間的某些幾何性質(zhì)或位置關(guān)系不變,這些圖形變化中的不變因素我們稱之為定值,與之相關(guān)的問(wèn)題稱為定值問(wèn)題.定
2025-01-27 14:09
【摘要】【高考地位】導(dǎo)數(shù)在研究函數(shù)的極值與最值問(wèn)題是高考的必考的重點(diǎn)內(nèi)容,已由解決函數(shù)、數(shù)列、不等式問(wèn)題的輔助工具上升為解決問(wèn)題的必不可少的工具,特別是利用導(dǎo)數(shù)來(lái)解決函數(shù)的極值與最值、零點(diǎn)的個(gè)數(shù)等問(wèn)題,在高考中以各種題型中均出現(xiàn),對(duì)于導(dǎo)數(shù)問(wèn)題中求參數(shù)的取值范圍是近幾年高考中出現(xiàn)頻率較高的一類問(wèn)題,其試題難度考查較大.【方法點(diǎn)評(píng)】類型一利用導(dǎo)數(shù)研究函數(shù)的極值使用情景:一般函數(shù)類型
2025-05-12 23:06
【摘要】初中幾何最值問(wèn)題例題精講一、三點(diǎn)共線1、構(gòu)造三角形【例1】在銳角中,AB=4,BC=5,∠ACB=45°,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn),得到△A1BC1.點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)過(guò)程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,求線段EP1長(zhǎng)度的最大值與最小值.【鞏固】以平面上一點(diǎn)O為直角頂點(diǎn),
2025-05-11 12:33
【摘要】幾何最值問(wèn)題(講義)l解決幾何最值問(wèn)題的通常思路_______________________,_______________________,__________________是解決幾何最值問(wèn)題的理論依據(jù),___________________________是解決最值問(wèn)題的關(guān)鍵.通過(guò)轉(zhuǎn)化減少變量,向三個(gè)定理靠攏進(jìn)而解決問(wèn)題;直接調(diào)用基本模型也是解決幾何最值問(wèn)題的高效手段.
2025-05-11 12:12
【摘要】......定點(diǎn)、定直線、定值專題1、已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過(guò)橢圓的右頂
2025-05-12 00:03
【摘要】......橢圓一、直線與橢圓問(wèn)題的常規(guī)解題方法:;(提醒:①設(shè)直線時(shí)分斜率存在與不存在;②設(shè)為y=kx+b與x=my+n的區(qū)別);(提醒:之所以要設(shè)是因?yàn)椴蝗デ蟪鏊?即“設(shè)而不求”);
2025-05-12 04:50
【摘要】成都市中考?jí)狠S題(二次函數(shù))精選【例一】.如圖,拋物線y=ax2+c(a≠0)經(jīng)過(guò)C(2,0),D(0,﹣1)兩點(diǎn),并與直線y=kx交于A、B兩點(diǎn),直線l過(guò)點(diǎn)E(0,﹣2)且平行于x軸,過(guò)A、B兩點(diǎn)分別作直線l的垂線,垂足分別為點(diǎn)M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當(dāng)k=0時(shí),直線y=kx與x軸重合,求出此時(shí)的值;②試說(shuō)明無(wú)論k取何值,
2025-05-11 06:27
【摘要】精銳教育學(xué)科教師輔導(dǎo)講義學(xué)員編號(hào):年級(jí):高二課時(shí)數(shù):學(xué)員姓名:張欣蕾輔導(dǎo)科目:數(shù)學(xué)學(xué)科教師:李欣授課類型T導(dǎo)數(shù)與函數(shù)極值與最值CT
2025-07-03 08:26
【摘要】初中幾何中線段和(差)的最值問(wèn)題一、兩條線段和的最小值?;緢D形解析:一)、已知兩個(gè)定點(diǎn):1、在一條直線m上,求一點(diǎn)P,使PA+PB最??;(1)點(diǎn)A、B在直線m兩側(cè):(2)點(diǎn)A、B在直線同側(cè):2、在直線m、n上分別找兩點(diǎn)P、Q,使PA+PQ+QB最小。(1)兩個(gè)點(diǎn)都在直線外側(cè):
【摘要】圓錐曲線專題——定點(diǎn)、定值問(wèn)題定點(diǎn)問(wèn)題是常見(jiàn)的出題形式,化解這類問(wèn)題的關(guān)鍵就是引進(jìn)變的參數(shù)表示直線方程、數(shù)量積、比例關(guān)系等,根據(jù)等式的恒成立、數(shù)式變換等尋找不受參數(shù)影響的量。直線過(guò)定點(diǎn)問(wèn)題通法,是設(shè)出直線方程,通過(guò)韋達(dá)定理和已知條件找出k和m的一次函數(shù)關(guān)系式,代入直線方程即可。技巧在于:設(shè)哪一條直線?如何轉(zhuǎn)化題目條件?圓錐曲線是一種很有趣的載體,自身存在很多性質(zhì),這些性質(zhì)往往成為出題老師
2024-09-15 05:10
【摘要】導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值適用學(xué)科高中數(shù)學(xué)適用年級(jí)高中三年級(jí)適用區(qū)域通用課時(shí)時(shí)長(zhǎng)(分鐘)60知識(shí)點(diǎn)函數(shù)的單調(diào)性函數(shù)的極值函數(shù)的最值教學(xué)目標(biāo)掌握函數(shù)的單調(diào)性求法,會(huì)求函數(shù)的函數(shù)的極值,會(huì)求解最值問(wèn)題,教學(xué)重點(diǎn)會(huì)利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性,會(huì)求解函數(shù)的最值。教學(xué)難點(diǎn)熟練掌握函數(shù)的單調(diào)性、極值、最值的求法,以及分類討論思想的應(yīng)用
2024-09-05 05:39
【摘要】......專題08解鎖圓錐曲線中的定點(diǎn)與定值問(wèn)題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點(diǎn)分別為,離心率為;.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)證明:在軸上存在定點(diǎn),使得為定
2025-06-04 13:05
【摘要】導(dǎo)數(shù)與單調(diào)性極值最基礎(chǔ)值習(xí)題 一.選擇題1.可導(dǎo)函數(shù)y=f(x)在某一點(diǎn)的導(dǎo)數(shù)值為0是該函數(shù)在這點(diǎn)取極值的( ?。〢.充分條件 B.必要條件C.充要條件 D.必要非充分條件2.函數(shù)y=1+3x﹣x3有( )A.極小值﹣1,極大值3 B.極小值﹣2,極大值3C.極小值﹣1,極大值1 D.極小值﹣2,極大值23.函數(shù)f(x)=x3+ax2﹣3x﹣9,已知f
2024-09-15 05:49
【摘要】導(dǎo)數(shù)單調(diào)性、極值、最值教學(xué)目標(biāo):掌握運(yùn)用導(dǎo)數(shù)求解函數(shù)單調(diào)性的步驟與方法重點(diǎn)難點(diǎn):能夠判定極值點(diǎn),并能求解閉區(qū)間上的最值問(wèn)題利用導(dǎo)數(shù)研究函數(shù)的極值、最值:(1)求導(dǎo)數(shù);(2)解方程;(3)使不等式成立的區(qū)間就是遞增區(qū)間,使成立的區(qū)間就是遞減區(qū)間。,右側(cè)____0,那么是的極大值;如果在根附近的左側(cè)____0,右側(cè)____0,那么是的極小值典型例題: