【摘要】利用極坐標(biāo)計算二重積分教學(xué)目的:利用極坐標(biāo)計算二重積分教學(xué)重點:二重積分化為極坐標(biāo)形式教學(xué)難點:用極坐標(biāo)表示平面區(qū)域由扇形面積公式可知其中第i個小區(qū)域的面積為設(shè)?????.sin,cos??ryrx,則AoDi??irr?iirrr???ii??????i???iiiiii
2024-12-06 12:04
【摘要】第二節(jié)二重積分的計算一、二重積分在直角坐標(biāo)系下的計算二、二重積分在極坐標(biāo)系下的計算一、二重積分在直角坐標(biāo)系下的計算二重積分的計算主要是化為兩次定積分計算,簡稱為化為二次積分或累次積分.下面從二重積分的幾何意義來引出這種計算方法.在直角坐標(biāo)系中,如果用平行于兩個坐標(biāo)軸的兩組直線段,將區(qū)域D分割成n個小塊
2024-08-30 20:21
【摘要】機動目錄上頁下頁返回結(jié)束高等數(shù)學(xué)A電子教案第二節(jié)一、利用直角坐標(biāo)計算二重積分二重積分的計算法二、利用極坐標(biāo)計算二重積分三、二重積分的換元法第十章機動目錄上頁下頁返回結(jié)束高等數(shù)學(xué)A電子教案xbad]
2025-06-18 18:15
【摘要】高等數(shù)學(xué)論文——淺談二重積分聽了肖老師整個大一的數(shù)學(xué)課,讓我深刻的感覺到數(shù)學(xué)的世界是多姿多彩的,數(shù)學(xué)的語言的優(yōu)雅完美的;正如老師所說的一樣,他的數(shù)學(xué)課就像是一篇散文。原來,數(shù)學(xué)還可以這么學(xué)。用幾個簡單的數(shù)學(xué)方程,在空間中組合成一個個靈動的圖形,這便是二重積分,這也是我想和大家一起分享的解題心得。首先讓我們明確定義:有界函數(shù)在有界閉區(qū)域D上的二重積分為。其中,為(i=1,2,...
2025-03-06 03:32
【摘要】如果積分區(qū)域D為:),()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba第二節(jié)二重積分的計算一、利用直角坐標(biāo)計算二重積分[X-型區(qū)域])(2xy??abD)(1xy??Dba)(2xy??)(
2025-01-25 01:13
【摘要】§二重積分?二重積分的概念?二重積分的性質(zhì)?二重積分的計算?小結(jié)?思考與練習(xí)在這一節(jié),我們將把一元函數(shù)定積分的概念及基本性質(zhì)推廣到二元函數(shù)的定積分,即二重積分,為引出二重積分的概念,我們先來討論兩個實際問題。,平面的閉區(qū)域設(shè)有一立體,它的底是DxOy軸的柱面,線平行于的邊界曲線為準(zhǔn)
2024-12-02 19:02
【摘要】一、問題的提出二、二重積分的概念三、二重積分的性質(zhì)四、小結(jié)思考題第一節(jié)二重積分的概念與性質(zhì)柱體(cylindricalbody)體積=底面積×高特點:平頂.曲頂柱體體積=?特點:曲頂(curvedvertexsurface).),(yxfz?D1.曲頂柱體的體積
2024-11-02 12:46
【摘要】第九節(jié)二重積分的計算(一)在直角坐標(biāo)系下計算二重積分如果積分區(qū)域為:,bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba在直角坐標(biāo)系下計算二重積分[X-型]
2024-11-04 08:49
【摘要】極坐標(biāo)系下二重積分的計算.??drdrd????Ddxdyyxf),(一、極坐標(biāo)系下二重積分的一般公式1、面積元素.?drdrdxdy??或i???i??ii??????iirrr???AoDir?.)sin,cos(???Drdrdrrf???2、一般公式
2025-01-25 10:11
【摘要】Ozyx第9章重積分二重積分的概念與性質(zhì)2重積分是定積分的推廣和發(fā)展.分割、取近似、求和、取極限.定積分的被積函數(shù)是一元函數(shù),而二重、三重積分的被積函數(shù)重積分有其廣泛的應(yīng)用.序言其同定積分一樣也是某種確定和式的極限,其基本思想是四
2024-09-11 17:21
【摘要】上一頁下一頁主頁返回退出上一頁下一頁主頁(一)教學(xué)目的:掌握二重積分的定義和性質(zhì).(二)教學(xué)內(nèi)容:二重積分的定義和性質(zhì).(1)基本要求:掌握二重積分的定義和性質(zhì),二重積分的充要條件,了解有界閉區(qū)域上的連續(xù)函數(shù)的可積性.(2)較高要求:平面點集可求面積的充要條件.上一頁下一頁主頁返回退
2024-12-21 16:40
【摘要】第一節(jié)二重積分的概念與性質(zhì)一、二重積分的概念二、二重積分的性質(zhì)三、小結(jié)思考題第九章重積分柱體體積=底面積×高特點:平頂.柱體體積=?特點:曲頂.),(yxfz?D1.曲頂柱體的體積一、二重積分的概念播放求曲頂柱體的體積采用“分
2024-12-06 09:33
【摘要】§4二重積分的變量交換教學(xué)重點:二重積分的變量變換(主要為線性變換,(廣義)極坐標(biāo)變換)教學(xué)內(nèi)容:教學(xué)難點:變量變換后積分限的確定一、二重積分的變量交換公式:.)
【摘要】第一節(jié)二重積分的概念與性質(zhì)一、問題的提出二、二重積分的概念三、二重積分的性質(zhì)四、小結(jié)思考題柱體體積=底面積×高特點:平頂.柱體體積=?特點:曲頂.),(yxfz?D1.曲頂柱體的體積一、問題的提出播放求曲頂柱體的體積采用“分割、
2025-04-10 12:14
【摘要】上一頁目錄下一頁退出§無界區(qū)域上簡單反常二重積分的計算與一元函數(shù)在無限區(qū)間上的反常積分類似,如果允許二重積分的積分區(qū)域D為無界區(qū)域(如全平面,半平面,有界區(qū)域的外部等),則可定義無界區(qū)域上的反常二重積分.定義設(shè)D是平面上一無界區(qū)域,函數(shù)f(x,y)在其上有定義,用任意光滑曲線Γ在D中劃出有界區(qū)域
2025-03-01 13:50