【摘要】第五節(jié)可降階的高階微分方程)()(xfyn?解法:??2)2(dCxyn??????xd??依次通過n次積分,可得含n個(gè)任意常數(shù)的通解.21CxC??型的微分方程一、例1.解:??12dcose
2025-07-10 03:56
【摘要】煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院一元微積分學(xué)融入數(shù)學(xué)建模思想的教學(xué)實(shí)踐與過程解析王憲杰煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,山東煙臺(tái),264005煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院高等數(shù)學(xué)在許多領(lǐng)域中都有著成功的應(yīng)用,但是,這些成功的應(yīng)用在目前幾乎所有《高等數(shù)學(xué)》教科書中卻很
2024-11-05 16:56
【摘要】可降階高階微分方程機(jī)動(dòng)目錄上頁下頁返回結(jié)束一、型的微分方程二、型的微分方程三、型的微分方程可降階微分方程的解法——降階法逐次積分令,)(xpy??
2025-07-15 17:48
【摘要】第四節(jié)一階線性微分方程教學(xué)目的:使學(xué)生掌握一階線性微分方程的解法,了解伯努利方程的解法教學(xué)重點(diǎn):一階線性微分方程教學(xué)過程:一、一階線性微分方程方程叫做一階線性微分方程.如果Q(x)o0,則方程稱為齊次線性方程,否則方程稱為非齊次線性方程.方程叫做對(duì)應(yīng)于非齊次線性方程的齊次線性方程.
2024-10-02 06:00
【摘要】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程——一元微積分學(xué)大學(xué)數(shù)學(xué)(一)第十六講求導(dǎo)法則腳本編寫、教案制作:劉楚中彭亞新鄧愛珍劉開宇孟益民響殃掌討菠紀(jì)介蓖林伍吊痔璃曹虧頌肛琢蔽旭謙蠻無愁版契橡緊涯
2025-03-09 05:32
【摘要】有關(guān)一階線性微分方程積分因子的解法摘要:當(dāng)一階線性微分方程不是恰當(dāng)微分方程或不存在只含有一個(gè)未知數(shù)的積分因子時(shí),微分方程的積分因子不易求得.本文給出了三種特殊形式的積分因子并證明了這三種積分因子存在的充分必要條件.關(guān)鍵詞:偏導(dǎo)數(shù);偏微分方程;線性微分方程;積分因子一引言對(duì)于一階微分方程,
2024-08-04 03:52
【摘要】微積分理論微分方程及其應(yīng)用微積分II微積分理論馮國(guó)臣2022/2/17例1一曲線通過點(diǎn)(1,2),且在該曲線上任一點(diǎn)),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設(shè)所求曲線為xdxdy2???xdxy22,1??yx時(shí)其中,2Cxy??即,1?C求得
2025-03-09 05:31
【摘要】引言第三章一元函數(shù)積分學(xué)積分學(xué)分為不定積分與定積分兩部分.不定積分是作為函數(shù)導(dǎo)數(shù)的反問題提出的,而定積分是作為微分的無限求和引進(jìn)的,兩者概念不相同,但在計(jì)算上卻有著緊密的內(nèi)在聯(lián)系.本章主要研究不定積分和定積分的概念、性質(zhì)及基本積分方法,并揭示二者的聯(lián)系,從而著重論證微積分
2024-11-05 22:52
【摘要】第七節(jié)(1)二階常系數(shù)齊次線性微分方程xrye?和它的導(dǎo)數(shù)只差常數(shù)因子,代入①得0e)(2???xrqprr02???qrpr稱②為微分方程①的特征方程,1.當(dāng)042??qp時(shí),②有兩個(gè)相異實(shí)根方程有兩個(gè)線性無關(guān)的特解:因此方程的通解為xrxrCCy21ee21??(r為待定常數(shù)
2025-07-10 04:31
【摘要】第十九講:一階微分方程、可降階微分方程的練習(xí)題答案一、單項(xiàng)選擇題(每小題4分,共24分)1.微分方程是(B)A.一階線性方程B.一階齊次方程C.可分離變量方程D.二階微分方程解:變形原方程是一階齊次方程,選B2.下列微分方程中,是可分離變量的方程是(C)A.
2025-03-03 03:34
【摘要】二、線性微分方程解的結(jié)構(gòu)三、二階常系數(shù)齊次線性方程解法五、小結(jié)思考題第五節(jié)二階常系數(shù)線性微分方程四、二階常系數(shù)非齊次線性方程解法一、定義一、定義0??????qyypy二階常系數(shù)齊次線性方程的標(biāo)準(zhǔn)形式)(xfqyypy??????二階常系數(shù)非齊次線性方程的標(biāo)準(zhǔn)形式二、線性微分方程的解的結(jié)構(gòu)
2024-11-02 12:45
【摘要】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程——一元微積分學(xué)大學(xué)數(shù)學(xué)(一)第四講數(shù)列極限收斂準(zhǔn)則、無窮小量、極限運(yùn)算腳本編寫、教案制作:劉楚中彭亞新鄧愛珍劉開宇孟益民第二章數(shù)列的極限與常數(shù)項(xiàng)級(jí)數(shù)的含義。和極限。正確理解》語言描述數(shù)列的會(huì)用《了解數(shù)列極限的概念,
2025-06-16 06:27
【摘要】返回后頁前頁返回后頁前頁§5微積分學(xué)基本定理一、變限積分與原函數(shù)的存在性本節(jié)將介紹微積分學(xué)基本定理,并用以證明連續(xù)函數(shù)的原函數(shù)的存在性.在此基礎(chǔ)上又可導(dǎo)出定積分的換元積分法與分部積分法.三、泰勒公式的積分型余項(xiàng)二、換元積分法與分部積分法返回返回后頁前頁返回后頁前頁
2024-11-01 09:08
【摘要】微積分學(xué)基本定理與定積分的計(jì)算暝歡梅裟贐潿咚妞耐浩徙羸倆橋瓣嫣蛙乩浜囹眇嚷陲牌攪殉蹩瞿尕莰宗乒辱玲鏍伎雒霖科返測(cè)捷蛘錙張入痖儲(chǔ)琳憒.)()(???babadttfdxxf且存在則有定積分上可積在若?badxxfbaf)(,],[因而有上可積在,],[xaf存在],[bax???xadt
2024-12-06 18:07
【摘要】)(xfyqypy??????),(為常數(shù)qp根據(jù)解的結(jié)構(gòu)定理,其通解為Yy?*y?非齊次方程特解齊次方程通解求特解的方法根據(jù)f(x)的特殊形式,的待定形式,代入原方程比較兩端表達(dá)式以確定待定系數(shù).①—待定系數(shù)法第七節(jié)(2)二階常系數(shù)非齊次線性微分方程)([exQx??
2025-07-10 04:37