【摘要】探索勾股定理街亭鎮(zhèn)中俞科世界上幾個文明古國都對勾股定理的發(fā)現(xiàn)作出過自己的貢獻。大約成書于公元前2世紀的我國天文學著作《周髀》(后人改稱《周髀算經(jīng)》)中,記載了“勾三、股四、弦五”(如圖),勾股定理在國外又稱畢達哥拉斯定理,相傳是古希臘數(shù)學家畢達哥拉斯發(fā)現(xiàn)的。勾股定理史話在漫長的
2024-12-10 01:13
【摘要】八年級數(shù)學勾股定理 《勾股定理》知識點總結(jié) 1:勾股定理 直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2) 要點詮釋: 勾股定理反映了直角三...
2024-12-06 05:20
【摘要】探索勾股定理學習目標,并利用拼圖的方法論證勾股定理的存在.2.理解和掌握“直角三角形兩條直角邊的平方和等于斜邊的平方”.3.在探索和實際操作中掌握勾股定理在實際生活中的應用.課前預習1.若直角三角形中兩直角邊分別為a,b,斜邊為c,則a,b,c之間的數(shù)量關系為
2024-12-07 22:44
【摘要】八年級上冊數(shù)學勾股定理練習卷一、精心選一選:1.下列各組數(shù)中,能構(gòu)成直角三角形的是()A、4,5,6B、1,1,C、6,8,11D、5,12,233、RtABC的兩邊長分別為3和4,若一個正方形的邊長是ABC的第三邊,則這個正方形的面積是()bA
2025-04-13 03:23
【摘要】勾股定理一、選擇題(每小題4分,共12分)1.(2020·黔西南州中考)一直角三角形的兩邊長分別為3和三邊的長為()B.C.或2.如圖,有一塊直角三角形紙板ABC,兩直角邊AC=6cm,BC=AC沿直線AD折疊,使它落在斜邊AB上,
2024-11-27 15:55
【摘要】勾股定理一、選擇題(每小題4分,共12分),每個小正方形的邊長為1,△ABC的三邊a,b,c的大小關系是()cbbcabba2.(2020·南京中考)設邊長為3的正方形的對角線長為a,下列關于a的四種說法:①a
【摘要】第1頁共3頁八年級數(shù)學勾股定理及其逆定理(勾股定理)基礎練習試卷簡介:全卷共6個選擇題,5個填空題,2個大題,分值100,測試時間30分鐘。本套試卷立足基礎,主要考察了學生對勾股定理及其逆定理基礎知識及基本運用的的掌握。各個題目難度有階梯性,學生在做題過程中可以回顧本章知識點,認清自己對知識的掌握及靈活運用程
2024-09-01 13:39
【摘要】1.理解并掌握勾股定理的逆定理;2.利用勾股定理的逆定理判定一個三角形是否直角三角形.一、學習目標本節(jié)的重點是:勾股定理的逆定理.本節(jié)的難點是:用勾股定理的逆定理判斷一個三角形是否直角三角形.
2024-11-23 23:17
【摘要】勾股定理第一章一個直角三角形的直角邊長分別是3和4,你知道它的斜邊長是多少嗎?要解決這個問題,就用到了我們即將要學習的——勾股定理.勾股世界我國是最早了解勾股定理的國家之一.早在三多年前,周朝數(shù)學家商高就提出,將一根直尺折成一個直角三角形,如果勾等于三,股等于四,那么弦就等于五.即“勾三、股四、弦
2024-12-07 22:42
【摘要】考拉,讓您的孩子更聰明地學習!老師姓名王志威學生姓名上課時間學科名稱數(shù)學年級八年級備注【課題名稱】八上數(shù)學《勾股定理》【考綱解讀】;,并且會熟練地運用勾股數(shù);,解決實際問題?!究键c梳理】考點1:勾股定理(1)勾股定理:直角三角
2025-04-13 03:28
【摘要】八年級數(shù)學勾股定理練習:(1)在△ABC中,∠C=Rt∠.若a=2,b=3則c=若a=5,c=b=.若c=61,b=a=.若a∶c=3∶5且c=20則b=.若∠A=60°且AC=7cm則AB=cm,BC=cm.(2)直角三角形一條直角邊與斜
2024-11-23 05:00
【摘要】八年級培優(yōu)班勾股定理【知識要點】1、勾股定理是:直角三角形兩直角邊的平方和等于斜邊的平方,即:2、勾股定理逆定理:如果三角形的三邊長a、b、c滿足那么這個三角形是直角三角形?!镜湫土曨}】例1、如圖,有一塊直角
【摘要】第1頁共4頁八年級數(shù)學勾股定理拓展提高(勾股定理)拔高練習試卷簡介:本測試卷共有13道題,其中5道填空題,5道解答題,3道證明題,分四個板塊,板塊一為回顧練習,回顧暑期學到的關于勾股定理的主要知識,相關題目為教材1、2、3題;板塊二為直角三角形六大性質(zhì),勾股定理只是直角三角形六大性質(zhì)之一,將直角三角形
2024-09-01 10:00
【摘要】勾股定理的應用把勾股定理送到外星球,與外星人進行數(shù)學交流!——華羅庚南京長江三橋勾股定理與它的逆定理在應用上有什么區(qū)別?勾股定理主要應用于求線段的長度、圖形的周長、面積;勾股定理的逆定理用于判斷三角形的
2024-12-10 01:27
【摘要】探索勾股定理(1)一、教學目標:知識技能:1、經(jīng)歷探索、驗證勾股定理的過程,發(fā)展推理能力。2、理解掌握勾股定理,會用勾股定理解決實際問題。過程方法:以教師為主導、學生為主體的學習方式,讓學生經(jīng)歷動手操作、實驗觀察、歸納猜想、驗證發(fā)現(xiàn)勾股定理的過程,培養(yǎng)學生探索能力,發(fā)展學生數(shù)形結(jié)合的數(shù)學思想方法。情感態(tài)度:1、通過引導學生動手操作
2024-12-02 02:16