freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

證明不等式的幾種常用方法-展示頁(yè)

2024-10-29 06:39本頁(yè)面
  

【正文】 、判斷與1的大小、 已知a,b,m都是正數(shù),并且ab,求證:a+ma.b+mb證明:a+mab(a+m)ab+bm184。R,0ab,\ab+bmab+am,即\ab+bm1, ab+ama+ma. b+mb綜合法綜合法就是由因?qū)Ч?即由已知條件出發(fā),利用已知的數(shù)學(xué)定理、性質(zhì)和公式,推出結(jié)論的一 已知x+y+z=1,求證:x+y+z179。(x+y+z+2xy+2yz+2zx)=(x+y+z)=, 3331222\x+y+z179。a+b+c例4 設(shè)a,b,c都正數(shù),求證:abc證明:Qa,b,c206。R+, abcbccacaababbc∴+179。2a,+179。2(a+b+c),∴2(+bcabccaab++179。, 3例5 已知x+y+z=1,求證:x+y+z179。(x+y+z),即3x+3y+3z179。2xy+2yz+2zx,即(x22xy+y2)+(y22xy+z2)+(z22zx+x2)179。0.Q(xy)2+(yz)2+(zx)2179。2221成立. 3(a+b)2a+b(ab)2ab.例6 設(shè)ab0,求證:8a28b(a+b)2(ab)2(ab)2證明:要證原不等式成立,只需證:.8a28b∵a185。1比較法比較法是證明不等式的最基本方法,具體有“作差”比較和“作商”比較兩種。當(dāng)求證的不等式兩端是分項(xiàng)式(或分式)時(shí),常用作差比較,當(dāng)求證的不等式兩端是乘積形式(或冪指數(shù)式時(shí)常用作商比較)例1已知a+b≥0,求證:a3+b3≥a2b+ab2分析:由題目觀察知用“作差”比較,然后提取公因式,結(jié)合a+b≥0來(lái)說(shuō)明作差后的正或負(fù),從而達(dá)到證明不等式的目的,步驟是10作差20變形整理30判斷差式的正負(fù)。例4,設(shè)a0,b0,a+b=1,證明:(a+1a)2+(B+1b)2≥252證明:∵ a0,b0,a+b=1∴ab≤14或1ab≥4左邊=4+(a2+b2)=1a2+1b2=4+[(a+b)22ab]+(a+b)22aba2b2=4+(12ab)+12aba2b2≥4+(112)+8=252練習(xí)3:已知a、b、c為正數(shù),n是正整數(shù),且f(n)=1gan+bn+3求證:2f(n)≤f(2n)4分析法從理論入手,尋找命題成立的充分條件,一直到這個(gè)條件是可以證明或已經(jīng)證明的不等式時(shí),便可推出原不等式成立,這種方法稱為分析法。要證cc2ab<a<c+c2ab只需證c2ab<ac<c2ab證明:即證 |ac|<c2ab即證(ac)2<c2ab即證 a22ac<ab∵a>0,∴即要證 a2c<b 即需證2+b<2c,即為已知∴ 不等式成立練習(xí)4:已知a∈R且a≠1,求證:3(1+a2+a4)>(1+a+a2)25放縮法放縮法是在證明不等式時(shí),把不等式的一邊適當(dāng)放大或縮小,利用不等式的傳遞性來(lái)證明不等式,是證明不等式的重要方法,技巧性較強(qiáng)常用技巧有:(1)舍去一些正項(xiàng)(或負(fù)項(xiàng)),(2)在和或積中換大(或換?。┠承╉?xiàng),(3)擴(kuò)大(或縮?。┓质降姆肿樱ɑ蚍帜福┑?。證明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=1又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2綜上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2練習(xí)5:已知:a<2,求證:loga(a+1)<16換元法換元法是許多實(shí)際問(wèn)題解決中可以起到化難為易,化繁為簡(jiǎn)的作用,有些問(wèn)題直接證明較為困難,若通過(guò)換元的思想與方法去解就很方便,常用于條件不等式的證明,常見(jiàn)的是三角換元。例若x、y∈R+,且 xy=1 A=(x1y)(y+1y)。1sec2θ=1cos2θcosθs2mθ例8:已知 x1=y+12=z23,求證:x2+y2+z2≥4314證明:設(shè)x1=y+12=z23=k于是x=k+1,y=zk1,z=3k+2把上式代入x2+y2+z2=(k+1)2(2k1)2+(3k+2)2=14(k+514)2+4314≥43147反證法有些不等式從正面證如果不好說(shuō)清楚,可以考慮反證法,即先否定結(jié)論不成立,然后依據(jù)已知條件以及有關(guān)的定義、定理、公理,逐步推導(dǎo)出與定義、定理、公理或已知條件等相矛盾或自相矛盾的結(jié)論,從而肯定原有結(jié)論是正確的,凡是“至少”、“唯一”或含有否定詞的命題,適宜用反證法。證明:解設(shè)p+q>2,那么p>2q∴p3>(2q)3=812q+6q2q3將p3+q3 =2,代入得 6q212q+6<0即6(q1)2<0 由此得出矛盾∴p+q≤2練習(xí)7:已知a+b+c>0,ab+bc+ac>0,abc>:a>0,b>0,c>08數(shù)學(xué)歸納法與自然數(shù)n有關(guān)的不等式,通??紤]用數(shù)學(xué)歸納法來(lái)證明。例10:設(shè)n∈N,且n>1,求證:(1+13)(1+15)…(1+12n1)>2n+12分析:觀察求證式與n有關(guān),可采用數(shù)學(xué)歸納法證明:(1)當(dāng)n=2時(shí),左= 43,右=52∵43>52∴不等式成立(2)假設(shè)n=k(k≥2,k∈n)時(shí)不等式成立,即(1+13)(1+15)…(1+12k1)>2k+12 那么當(dāng)n=k+1時(shí),(1+13)(1+15)…(1+12k1)(1+12k+1)>2k+122k+22k+1>2k+32②對(duì)于②〈二〉2k+2>2k+11構(gòu)造函數(shù)法例11:證明不等式:x12x <x2(x≠0)證明:設(shè)f(x)=x12xx2(x≠0)∵f(x)=x12x+x2x2x2x1+x2=x12x[1(12x)]+x2=x12xx+x2=f(x)∴f(x)的圖像表示y軸對(duì)稱∵當(dāng)x>0時(shí),12x<0,故f(x)<0∴當(dāng)x<0時(shí),據(jù)圖像的對(duì)稱性知f(x)<0∴當(dāng)x≠0時(shí),恒有f(x)<0 即x12x<x2(x≠0)練習(xí)9:已知a>b,2b>a+c,求證:bb2ab<a<b+b2ab2構(gòu)造圖形法例12:若f(x)=1+x2,a≠b,則|f(x)f(b)|< |ab|分析:由1+x2 的結(jié)構(gòu)可知這是直角坐標(biāo)平面上兩點(diǎn)A(1,x),0(0,0)的距離即 1+x2 =(10)2+(x0)2于是如下圖,設(shè)A(1,a),B(1,b)則0A= 1+a2 0B=1+b2|AB|=|ab|又0A||0B<|AB|∴|f(a)f(b)|<|ab|練習(xí)10:設(shè)a≥c,b≥c,c≥0,求證 c(ac)+c(bc)≤ab10添項(xiàng)法某些不等式的證明若能優(yōu)先考慮“添項(xiàng)”技巧,能得到快速求解的效果。例13:已知a、b、c∈R+,那么a3+b3+c3≥3abc(當(dāng)且僅當(dāng)a=b=c時(shí)等號(hào)成立)證明:∵a、b、c∈R+∴a3+b3+c3=12 [(a3+b3)+(b3+c3)+(c3+a3)]≥12 [(a2b+ab2)+(b2c+bc2)+(c2a+ca2)]=12[a(b2+c2)+b(c2+a2)+c(a2+b2)]≥12(a2ca+c2平方添項(xiàng)運(yùn)用此法必須注意原不等號(hào)的方向例14 :對(duì)于一切大于1的自然數(shù)n,求證:(1+13)(1+15)…(1+12n1> 2n+1 2)證明:∵b > a> 0,m> 0時(shí)ba> b+ma+m∵ [(1+13)(1+15)…(1+12n
點(diǎn)擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1