freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)新課程創(chuàng)新教學(xué)設(shè)計(jì)案例50篇40平面向量的數(shù)量積-展示頁(yè)

2024-10-21 03:39本頁(yè)面
  

【正文】 sα.又cosβ>0,所以cos(α-β)>cosα-cosβ. (1)如何把α,β,α-β角的三角函數(shù)值之間建立起關(guān)系?要獲得相應(yīng)的表達(dá)式需要哪些已學(xué)過(guò)的知識(shí)?(2)由三角函數(shù)線的定義可知,這些角的三角函數(shù)值都與單位圓中的某些有向線段有關(guān)系,那么,這些有向線段之間是否有關(guān)系呢?通過(guò)學(xué)生的討論,教師引導(dǎo)學(xué)生作出以下推理:設(shè)角α的終邊與單位圓的交點(diǎn)為P1,∠POP1=β,則∠POx=α-β.過(guò)點(diǎn)P作PM⊥x軸,垂足為M,那么,OM即為α-β角的余弦線,這里要用表示α,β的正弦、余弦的線段來(lái)表示OM.過(guò)點(diǎn)P作PA⊥OP1,垂足為A,過(guò)點(diǎn)A作AB⊥x軸,垂足為B,再過(guò)點(diǎn)P作PC⊥AB,垂足為C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP=OAcosα+APsinα= cosβcosα+sinβsinα. ,組織學(xué)生討論(1)當(dāng)α,β,α-β為任意角時(shí),上述推導(dǎo)過(guò)程還能成立嗎?若要說(shuō)明此結(jié)果是否對(duì)任意角α,β都成立,還要做不少推廣工作,可引導(dǎo)學(xué)生獨(dú)立思考.事實(shí)上,根據(jù)誘導(dǎo)公式,總可以把α,β的三角函數(shù)化為(0,)內(nèi)的三角函數(shù),再根據(jù)cos(-β)=cosβ,把α-β的余弦,化為銳角的余弦.因此,三、解釋應(yīng)用[例 題]176。=-cos30176。-30176。β=30176。=0,∴⊥,.故O是△ABC的垂心.兩角和與差的余弦教材分析這節(jié)內(nèi)容是在掌握了任意角的三角函數(shù)的概念、向量的坐標(biāo)表示以及向量數(shù)量積的坐標(biāo)表示的基礎(chǔ)上,進(jìn)一步研究用單角的三角函數(shù)表示的兩角和與差的三角函數(shù).這些內(nèi)容在高等數(shù)學(xué)、電功學(xué)、力學(xué)、機(jī)械設(shè)計(jì)與制造等方面有著廣泛的應(yīng)用,因此要求學(xué)生切實(shí)學(xué)好,并能熟練的應(yīng)用,以便為今后的學(xué)習(xí)打下良好的基礎(chǔ). “兩角差的余弦公式”在教科書(shū)中采用了一種易于教學(xué)的推導(dǎo)方法,即先借助于單位圓中的三角函數(shù)線,推出α,β,α-β均為銳角時(shí)成立.對(duì)于α,β為任意角的情況,教材運(yùn)用向量的知識(shí)進(jìn)行了探究.同時(shí),補(bǔ)充了用向量的方法推導(dǎo)過(guò)程中的不嚴(yán)謹(jǐn)之處,這樣,兩角差的余弦公式便具有了一般性.這節(jié)課的重點(diǎn)是兩角差的余弦公式的推導(dǎo),難點(diǎn)是把公式中的α,β角推廣到任意角.教學(xué)目標(biāo),培養(yǎng)學(xué)生通過(guò)交流,探索,發(fā)現(xiàn)和獲得新知識(shí)的能力.,體會(huì)知識(shí)的發(fā)生、發(fā)展的過(guò)程和初步的應(yīng)用過(guò)程,培養(yǎng)學(xué)生科學(xué)的思維方法和勇于探索的科學(xué)精神.、求值和恒等式證明.任務(wù)分析這節(jié)內(nèi)容以問(wèn)題情景中的問(wèn)題作為教學(xué)的出發(fā)點(diǎn),利用單位圓中的三角函數(shù)線和平面向量的數(shù)量積的概念推導(dǎo)出結(jié)論,并不斷補(bǔ)充推導(dǎo)過(guò)程中的不嚴(yán)謹(jǐn)之處.推導(dǎo)過(guò)程采用了從特殊到一般逐層遞進(jìn)的思維方法,學(xué)生易于接受.整個(gè)過(guò)程始終結(jié)合單位圓,以強(qiáng)調(diào)其直觀性.對(duì)于公式中的α和β角要強(qiáng)調(diào)其任意性.?dāng)?shù)學(xué)中要注意運(yùn)用啟發(fā)式,切忌把結(jié)果直接告訴學(xué)生,盡量讓學(xué)生通過(guò)觀察、思考和探索,自己發(fā)現(xiàn)公式,使學(xué)生充分體會(huì)到成功的喜悅,進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)他們學(xué)習(xí)的積極性,從而使其自覺(jué)主動(dòng)地學(xué)習(xí).教學(xué)過(guò)程一、問(wèn)題情景我們已經(jīng)學(xué)過(guò)誘導(dǎo)公式,如可以這樣來(lái)認(rèn)識(shí)以上公式:把角α轉(zhuǎn)動(dòng),則所得角α+的正弦、余弦分別等于cosα和-sinα.把角α轉(zhuǎn)動(dòng)π,則所得角α+π的正弦、余弦分別等于-sinα和-cosα. 由此,使我們想到一個(gè)一般性的問(wèn)題:如果把角α的終邊轉(zhuǎn)動(dòng)β(度或弧度),那么所得角α+β的正弦、余弦如何用α或β的正弦、余弦來(lái)表示呢? 出示一個(gè)實(shí)際問(wèn)題:右圖411是架在小河邊的一座吊橋的示意圖.吊橋長(zhǎng)AB=a(m),A是支點(diǎn),在河的左岸.點(diǎn)C在河的右岸,地勢(shì)比A點(diǎn)高.AD表示水平線,∠DAC=α,α為定值.∠CAB=β,β隨吊橋的起降而變化.在吊橋起降的過(guò)程中,如何確定點(diǎn)B離開(kāi)水平線AD的高度BE?由圖可知BE=asin(α+β).我們的問(wèn)題是:如何用α和β的三角函數(shù)來(lái)表示sin(α+β).如果α+β為銳角,你能由α,β的正弦、余弦求出sin(α+β)嗎?引導(dǎo)學(xué)生分析:事實(shí)上,我們?cè)谘芯咳呛瘮?shù)的變形或計(jì)算時(shí),經(jīng)常提出這樣的問(wèn)題:能否用α,β的三角函數(shù)去表示α177。即問(wèn):O點(diǎn)在△ABC的什么位置?解:由同理⊥=.同理∠AOC=∠BOC=120176。. 同理∠BOC=∠AOC=120176。b=c2,∴2|a|b的幾何意義嗎? 如圖403,a+(2a+b)=61,求a與b的夾角θ.+21=8,∴|a+b+c|=2.,求六、拓展延伸c=1+1+2+211cos90176。b+2a. 22因此,當(dāng)k=177。-6|b|=-72.|a|=3,|b|=4,且a與b不共線.當(dāng)k為何值時(shí),(a+kb)⊥(a-kb)? 解:(a+kb)⊥(a-kb),即(a+kb)b+2b(a-3b). 解:(a+2b)b= a2-b2. ∴有類似結(jié)論.|a|=6,|b|=4,〈a,b〉=60176。b+b(a-b)=ab= a2+2ab+b(a+b)= ab+b2,(a+b)b=cb)c=a(bc+bb,∴(a+b)c(乘法對(duì)加法的分配律).證明:如圖402,任取一點(diǎn)O,作=a,=b,=c.∵a+b(即)在c方向上的投影等于a,b在c方向上的投影的和,即|a+b|c(diǎn)osθ=|a|c(diǎn)osθ1+|b|c(diǎn)osθ2,∴|c(diǎn)||a+b|c(diǎn)osθ=|c(diǎn)|(|a|c(diǎn)osθ1+|b|c(diǎn)osθ2)= |c(diǎn)||a|c(diǎn)osθ1+|c(diǎn)||b|c(diǎn)osθ2=cc=a(λb)=λ(ab=λ(ab=0=λ(ab);當(dāng)λ=0時(shí),(λa)b); 當(dāng)λ<0時(shí),λa與b的夾角為(π-θ),∴(λa)b=(λa)b)=aa(交換律). 證明:左=|a||b|c(diǎn)osθ=右.(2)(λa).:從數(shù)學(xué)的角度考慮,我們希望向量的數(shù)量積運(yùn)算,也能像數(shù)量乘法那樣滿足某些運(yùn)算律,這樣數(shù)量積運(yùn)算才更富有意義.回憶實(shí)數(shù)的運(yùn)算律,你能類比和歸納出向量數(shù)量積的一些運(yùn)算律嗎?它們成立嗎?為什么?已知:向量a,b,c和λ∈R,則(1)ab.(2)a在b上的投影.:在△ABC中,a=5,b=8,c=60176。b=|a||b|c(diǎn)os〈a,b〉=54cos120176。求ab=0..(4)cos〈a,b〉=.(5)|ab是非零向量,則a⊥b(3)ab=|a||b|c(diǎn)osθ.其中θ是a與b夾角,|a|c(diǎn)osθ(|b|c(diǎn)osθ)叫a在b方向上(b在a方向上)的投影.規(guī)定0與任一向量的數(shù)量積為0.由上述定義可知,兩個(gè)向量a與b的數(shù)量積是一個(gè)實(shí)數(shù).說(shuō)明:向量a與b的夾角θ是指把a(bǔ),b起點(diǎn)平移到一起所成的夾角,其中0≤θ≤π.當(dāng)θ=時(shí),稱a和b垂直,記作a⊥b.為方便起見(jiàn),a與b的夾角記作〈a,b〉. 根據(jù)向量數(shù)量積的定義,可以得出(1)設(shè)e是單位向量,ab)c=a(bc與a=c的關(guān)系,ab”不同于兩實(shí)數(shù)之積“ab”.通過(guò)實(shí)例理解a(-)=0,即=⊥=…△ABC中,故△AOB,△BOC,△BOC全等,∴AB=AC=BC,即該△ABC為等邊三角形.解法2:如圖406,.=c,=-a,=-b,由a+b+c=0,即=+∵|a|=|b|=1,∴OADB為菱形.又||=1,∴∠AOB=120176。|b|c(diǎn)os∠AOC=-1,cos∠AOC=,∠AOC=120176。b,即以b在a上射影的長(zhǎng)和a的長(zhǎng)為兩鄰邊的矩形面積(OA=OA1).,如圖404,=-=+,.試說(shuō)明平行四邊形對(duì)角線的長(zhǎng)度與兩條鄰邊長(zhǎng)度之間的關(guān)系.,b,c有相同終點(diǎn)且a+b+c=0,問(wèn):它們的起點(diǎn)連成怎樣的三角形?解法1:如圖405,∵|a|=|b|=|c(diǎn)|=1,a+b+c=0,∴a+b=-c,∴(a+b)=(-c)2,2∴a2+b2+2a.,b的夾角為銳角時(shí),你能說(shuō)明a++21[練習(xí)]1.|a|=4,|b|=3,(2a-3b)c+2b時(shí),有(a+kb)⊥(a-kb).:正方形ABCD的邊長(zhǎng)為1,并且=a,=b,=c,求|a+b+c|.解法1:∵a+b+c=++=2,∴|a+b+c|=2=2.解法2:|a+b+c|2=(a+b+c)2=a2+b2+c2+2a(a-kb)=0,即a2-k2b2=0,即9-k216=0,k=177。a-6b2=|a|-|a||b|c(diǎn)os60176。(a-3b)= a2-3a求(a+2b)a-ba-ab+b2,22(a+b)a+ba+a(a-b)=a2-b2. 其證明是:(a+b)=(a+b)b,那么a=c嗎?五、應(yīng)用與深化 [例 題],b,有(a+b)=a+2ab+b,(a+b)(a-b)=a-b.類似地,對(duì)任意向量a,b,也有類似結(jié)論嗎?為什么?解:類比完全平方和公式與平方差公式,有(a+b)2=a2+2ac)嗎?(2)向量的數(shù)量積滿足消去律,即如果ac.思考:(1)向量的數(shù)量積滿足結(jié)合律,即(ac=aa+cc+bb).(3)(a+b)b); 同理ab). 總之,(λa)b=0b=|λa||b|c(diǎn)os(π-θ)=-λ|a||b|(-cosθ)=λ|a||b|c(diǎn)osθ=λ(a|b|c(diǎn)osθ=λ|a||b|c(diǎn)osθ=λ(a(λb)(數(shù)乘結(jié)合律). 證明:設(shè)a,b夾角為θ,當(dāng)λ>0時(shí),λa與b的夾角為θ,∴(λa)b=λ(ab=b求四、建立向量數(shù)量積的運(yùn)算律=-10. [練習(xí)]|a|=3,b在a上的投影為-2,求:(1)ab. 解:ab|≤|a||b|(這與實(shí)數(shù)|ab|=|a||b|不同).三、解釋應(yīng)用 [例 題]已知|a|=5,|b|=4,〈a,b〉=120176。a=|a|2,于是|a|=ae=|a|c(diǎn)os〈a,e〉.(2)設(shè)ac)與(ab)c=a(bc)的不同.教學(xué)設(shè)計(jì)一、問(wèn)題情景如圖401所示,一個(gè)力f作用于一個(gè)物體,使該物體發(fā)生了位移s,如何計(jì)算這個(gè)力所做的功.由于圖示的力f的方向與前進(jìn)方向有一個(gè)夾角θ,真正使物體前進(jìn)的力是f在物體前進(jìn)方向上的分力,這個(gè)分力與物體位移的乘積才是力f做的功.即力f使物體位移x所做的功W可用下式計(jì)算.W=|s||f|c(diǎn)osθ.其中|f|c(diǎn)osθ就是f在物體前進(jìn)方向上的分量,也就是力f在物體前進(jìn)方向上正射影的數(shù)量.問(wèn)題:像功這樣的數(shù)量值,它由力和位移兩個(gè)向量來(lái)確定.我們能否從中得到啟發(fā),把“功”看成這兩個(gè)向量的一種運(yùn)算的結(jié)果呢?二、建立模型“功”的模型中得到如下概念:已知兩個(gè)非零向量a與b,把數(shù)量|a||b|c(diǎn)osθ叫a與b的數(shù)量積(內(nèi)積),記作ab=0與a=0或b=0的關(guān)系,以及(ab=b第一篇:高中數(shù)學(xué)新課程創(chuàng)新教學(xué)設(shè)計(jì)案例50篇 40 平面向量的數(shù)量積平面向量的數(shù)量積教材分析兩個(gè)向量的數(shù)量積是中學(xué)代數(shù)以往內(nèi)容中從未遇到過(guò)的一種新的乘法,它區(qū)別于數(shù)的乘法.這篇案例從學(xué)生熟知的功的概念出發(fā),引出平面向量數(shù)量積的概念和性質(zhì)及其幾何意義,介紹向量數(shù)量積的運(yùn)算律及坐標(biāo)表示.向量的數(shù)量積把向量的長(zhǎng)度和三角函數(shù)聯(lián)系在一起,這為解決三角形的有關(guān)問(wèn)題提供了方便,特別是能有效解決線段的垂直等問(wèn)題.這節(jié)內(nèi)容是整個(gè)向量部分的重要內(nèi)容之一,對(duì)它的理解與掌握將直接影響向量其他內(nèi)容的學(xué)習(xí).這節(jié)內(nèi)容的教學(xué)難點(diǎn)是對(duì)平面向量數(shù)量積的定義及運(yùn)算律的理解和對(duì)平面向量數(shù)量積的應(yīng)用.教學(xué)目標(biāo)、幾何意義和數(shù)量積的坐標(biāo)表示,會(huì)初步使用平面向量的數(shù)量積來(lái)處理有關(guān)長(zhǎng)度、角度和垂直的問(wèn)題,掌握向量垂直的條件.,初步體會(huì)知識(shí)發(fā)生、發(fā)展的過(guò)程和運(yùn)用過(guò)程,培養(yǎng)學(xué)生的科學(xué)思維習(xí)慣.任務(wù)分析兩個(gè)向量的數(shù)量積從形式和實(shí)質(zhì)上都與數(shù)的乘法有區(qū)別,這就給理解和掌握這個(gè)概念帶來(lái)了一些困難.在學(xué)習(xí)時(shí),要充分讓學(xué)生理解、明白兩個(gè)向量的數(shù)量積是一個(gè)數(shù)量,而不是向量.兩個(gè)向量的數(shù)量積的值是這兩個(gè)向量的模與兩個(gè)向量夾角余弦的乘積,其符號(hào)由夾角余弦值的正負(fù)而確定.兩向量的數(shù)量積“ab”不同于兩實(shí)數(shù)之
點(diǎn)擊復(fù)制文檔內(nèi)容
外語(yǔ)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1