【摘要】第三章第1課時一、選擇題1.(2021·廣東省中山一中期中)方程(2x-y+2)x2+y2-1=0表示的曲線是()A.一個點與一條直線B.兩條射線和一個圓C.兩個點D.兩個點或一條直線或一個圓[答案]B[解析]原方程等價于x2+y2-1=0,或
2024-12-15 00:16
【摘要】拋物線及其標準方程(一)城郊中學:代俊俊拋物線的生活實例探照燈的燈面平面內(nèi)與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線。注1定點F叫做拋物線的焦點。2定直線L叫做拋物線的準線3點F在直線外(若點在直線上呢?)一拋物線的定義的軌跡是
2024-11-29 15:04
【摘要】§拋物線的幾何性質(zhì)設(shè)計人:趙軍偉審定:數(shù)學備課組【學習目標】,并能從拋物線的標準方程出發(fā),推導這些性質(zhì).,推導拋物線的性質(zhì),從而培養(yǎng)學生分析、歸納、推理等能力【學習重點】理解并掌握拋物線的幾何性質(zhì)【學習難點】能從拋物線的標準方程出發(fā),推導這些性質(zhì)【知識銜接
2024-12-20 17:46
【摘要】第三章第2課時一、選擇題1.設(shè)直線y=a(a∈R)與曲線y=|3-x2|的公共點個數(shù)為m,那么下列不能成立的是()A.m=4B.m=3C.m=2D.m=1[答案]D[解析]利用數(shù)形結(jié)合,易得兩曲線不可能有一個公共點.2.拋物線與直線有一個公共點是直線與拋物線
【摘要】第二章第1課時一、選擇題1.在下列命題中:①若a、b共線,則a、b所在的直線平行;②若a、b所在的直線是異面直線,則a、b一定不共面;③若a、b、c三向量兩兩共面,則a、b、c三向量一定也共面;④已知三向量a、b、c,則空間任意一個向量p總可
【摘要】第二章第2課時一、選擇題1.下列式子中正確的是()A.a(chǎn)·|a|=a2B.(a·b)2=a2·b2C.(a·b)c=a(b·c)D.|a·b|≤|a|·|b|[答案]D2.已知非零向量a,b不共線,且其模相等
【摘要】拋物線及其標準方程同步練習一,選擇題:1.經(jīng)過點P(4,-2)的拋物線的標準方程是()(A)y2=x或x2=y(B)y2=-x或x2=8y(C)x2=-8y或y2=x(D)x2=-8y或y2=-x2.平面上動點P到定點F(1,0)的距離比到y(tǒng)
2024-12-17 06:33
【摘要】拋物線的簡單幾何性質(zhì)城郊中學:代俊俊M是拋物線y2=2px(p>0)上一點,若點M的橫坐標為x0,則點M到焦點的距離是x0+—2pOyx.FM.焦半徑及焦半徑公式拋物線上一點到焦點的距離P(x0,y0)在y2=2px上,P(x0,y
2024-11-30 13:30
【摘要】課題拋物線及其標準方程(一)第一課時學習目標:、準線的概念..,利用方程研究拋物線,進一步運用坐標法,提高“數(shù)學應(yīng)用”意識.學習重點:.會求簡單的拋物線的方程.學習難點:標準方程的推導學習方法:以講學稿為依托的探究式教學方法。學習過程一、課前預習指導:1.橢圓的定義
2024-11-30 18:59
【摘要】第一章一、選擇題1.下列語句中不是命題的是()A.3≥6B.二次函數(shù)不是偶函數(shù)C.x>0D.對于x∈R,總有x2>0[答案]C[解析]C選項x的范圍未給出,不能判斷真假.2.下列命題中,假命題的個數(shù)為()①2不是素數(shù);②自然數(shù)不都大于0;③
2024-12-12 22:16
【摘要】拋物線的簡單性質(zhì)同步練習一,選擇題:1、焦點為10,8???????的拋物線的標準方程為()A、214xy??B、22xy??C、22yx??D、22yx?2、拋物線22yx??的通徑長為()A、4B、2
2024-12-17 06:37
【摘要】§2拋物線拋物線及其標準方程課程目標學習脈絡(luò)1.理解拋物線的定義及標準方程形式.2.了解拋物線的焦點、準線.3.掌握拋物線標準方程的四種形式,并能說出各自的特點,從而培養(yǎng)學生數(shù)形結(jié)合解決問題的能力及分類討論的數(shù)學思想.121.拋物線定義—平面內(nèi)與
2024-11-28 23:22
【摘要】【成才之路】2021-2021學年高中數(shù)學拋物線及其標準方程練習北師大版選修1-1一、選擇題1.平面內(nèi)到定點F的距離等于到定直線l的距離的點的軌跡是()A.拋物線B.直線C.拋物線或直線D.不存在[答案]C[解析]當點F在直線l上時,為過點F與l垂直的直線;當點F不在直線l上
2024-12-10 19:11
【摘要】課題拋物線的簡單性質(zhì)(一)學習目標,理解焦點弦的概念,理解拋物線性質(zhì)與標準方程的關(guān)系.,進一步理解用代數(shù)方法研究幾何性質(zhì)的優(yōu)越性,感受坐標法和數(shù)形結(jié)合的基本思想.,類比拋物線的性質(zhì);由拋物線的方程研究性質(zhì),鞏固數(shù)形結(jié)合思想.學習重點:拋物線的性質(zhì),理解拋物線性質(zhì)與標準方程的關(guān)系.學習難點:
【摘要】§2拋物線(二)課時目標,知道拋物線的簡單幾何性質(zhì),學會利用拋物線方程研究拋物線的幾何性質(zhì)的方法.單應(yīng)用.1.拋物線的簡單幾何性質(zhì)設(shè)拋物線的標準方程為y2=2px(p0)(1)范圍:拋物線上的點(x,y)的橫坐標x的取值范圍是________,拋物線在y軸的______側(cè),當x的值增大時
2024-12-16 23:46