【摘要】離散型隨機(jī)變量的均值1、什么叫n次獨(dú)立重復(fù)試驗(yàn)?一.復(fù)習(xí)其中0<p<1,p+q=1,k=0,1,2,...,nP(X=k)=pkqn-kCkn則稱X服從參數(shù)為n,p的二項(xiàng)分布,記作X~B(n,p)一般地,由n次試驗(yàn)構(gòu)成,且每次試驗(yàn)互相獨(dú)立完成,每次試驗(yàn)的結(jié)果僅有兩種對立的狀態(tài),即A與,每次試驗(yàn)中P(A)
2024-11-30 08:45
【摘要】離散型隨機(jī)變量的方差一般地,若離散型隨機(jī)變量X的概率分布為則稱E(X)=x1p1+x2p2+…+xnpn為X的均值或數(shù)學(xué)期望,記為E(X)或μ.Xx1x2…xnPp1p2…pn其中pi≥0,i=1,2,…,n;p1+p2+…+pn=11、離散型隨機(jī)變量的均值的定義
【摘要】第二章隨機(jī)變量?隨機(jī)變量及其分布函數(shù)?離散型隨機(jī)變量?連續(xù)型隨機(jī)變量?隨機(jī)變量函數(shù)的分布在實(shí)際問題中,隨機(jī)試驗(yàn)的結(jié)果可用數(shù)量來表示,這就產(chǎn)生了隨機(jī)變量的概念?!祀S機(jī)變量及其分布函數(shù)一方面,有些試驗(yàn),其結(jié)果與數(shù)有關(guān)(試驗(yàn)結(jié)果就是一個(gè)數(shù));
2025-06-26 06:28
【摘要】離散型隨機(jī)變量的期望與方差習(xí)題課要點(diǎn)梳理X的分布列為Xx1x2…xi…xnPp1p2…pi…pn(1)均值稱E(X)=_________________________為隨機(jī)變量X的均值或___________
2024-12-02 23:51
【摘要】復(fù)習(xí)引入1、什么是隨機(jī)事件?什么是基本事件?在一定條件下可能發(fā)生也可能不發(fā)生的事件,叫做隨機(jī)事件。試驗(yàn)的每一個(gè)可能的結(jié)果稱為基本事件。2、什么是隨機(jī)試驗(yàn)?凡是對現(xiàn)象或?yàn)榇硕M(jìn)行的實(shí)驗(yàn),都稱之為試驗(yàn)。如果試驗(yàn)具有下述特點(diǎn):(1)試驗(yàn)可以在相同條件下重復(fù)進(jìn)行;(2)每次試驗(yàn)的所有可能結(jié)果都是明確可知的,并且不止一
2025-07-29 05:55
【摘要】?某商場要根據(jù)天氣預(yù)報(bào)來決定今年國慶節(jié)是在商場內(nèi)還是商場外開展促銷活動(dòng),統(tǒng)計(jì)資料表明,每年國慶節(jié)商場內(nèi)的促銷活動(dòng)可獲得經(jīng)濟(jì)效益2萬元,商場外的促銷活動(dòng)如果不遇到有雨天氣可獲得經(jīng)濟(jì)效益10萬元,如果促銷遇到有雨天氣則帶來經(jīng)濟(jì)損失4萬元。9月30日氣象臺(tái)預(yù)報(bào)國慶節(jié)當(dāng)?shù)赜杏甑母怕适?0%,商場應(yīng)該選擇哪種促銷方式?,其中某一次射擊中,可能
2024-08-31 01:21
【摘要】一、復(fù)習(xí)引入1、離散型隨機(jī)變量ξ的期望Eξ=x1p1+x2p2+…xnpn+…2、滿足線性關(guān)系的離散型隨機(jī)變量的期望E(aξ+b)=aEξ+b3、服從二項(xiàng)分布的離散型隨機(jī)變量的期望Eξ=np即若ξ~B(n,p),則4、服從幾何分布的隨機(jī)變量的期望若p(ξ=k)=
2024-11-23 08:47
【摘要】2.3.2離散型隨機(jī)變量的方差教學(xué)目標(biāo):知識(shí)與技能:了解離散型隨機(jī)變量的方差、標(biāo)準(zhǔn)差的意義,會(huì)根據(jù)離散型隨機(jī)變量的分布列求出方差或標(biāo)準(zhǔn)差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會(huì)應(yīng)用上述公式計(jì)算有關(guān)隨機(jī)變量的方差。情感、態(tài)度與價(jià)值觀:承前啟后,感悟數(shù)學(xué)與生活的和諧之美,體現(xiàn)數(shù)學(xué)的文化功能與人文價(jià)值。教
2025-04-25 08:34
【摘要】?第二節(jié)離散型隨機(jī)變量的期望與方差考綱點(diǎn)擊值、方差的意義.布列求出期望值、方差.熱點(diǎn)提示題的形式考查期望、方差在實(shí)際生活中的應(yīng)用.的關(guān)鍵.1.期望(1)若離散型隨機(jī)變量ξ的概率分布列為ξx1x2?xn?Pp1p
2024-11-22 00:24
【摘要】例1:某保險(xiǎn)公司新開設(shè)了一項(xiàng)保險(xiǎn)業(yè)務(wù),若在一年內(nèi)事件E發(fā)生,該公司要賠償a元.設(shè)在一年內(nèi)E發(fā)生的概率為p,為使公司收益的期望值等于a的10%,公司應(yīng)要求顧客交多少保險(xiǎn)金?例2:將一枚硬幣拋擲20次,求正面次數(shù)與反面次數(shù)之差?的概率分布,并求出?的期望E?與方差D?.例3(07全國高考)某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計(jì),顧客
2024-10-25 20:03
【摘要】第7講離散型隨機(jī)變量的均值與方差A(yù)級基礎(chǔ)演練(時(shí)間:30分鐘滿分:55分)一、選擇題(每小題5分,共20分)1.(2021·西安模擬)樣本中共有五個(gè)個(gè)體,其值分別為a,0,1,2,的平均值為1,則樣本方差為().A.65
2024-12-20 14:23
【摘要】SCH南極數(shù)學(xué)同步教學(xué)設(shè)計(jì)人教A版選修2-3第二章《隨機(jī)變量及其分布》2.3.2離散型隨機(jī)變量的方差(教學(xué)設(shè)計(jì))教學(xué)目標(biāo):知識(shí)與技能:了解離散型隨機(jī)變量的方差、標(biāo)準(zhǔn)差的意義,會(huì)根據(jù)離散型隨機(jī)變量的分布列求出方差或標(biāo)準(zhǔn)差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p)
2025-04-25 08:49
【摘要】§2離散型隨機(jī)變量研究一個(gè)離散型隨機(jī)變量不僅要知道它可能取值而且要知道它取每一個(gè)可能值的概率.一.概率分布:設(shè)離散型隨機(jī)變量的可能取值是有限個(gè)或可數(shù)個(gè)值,設(shè)的可能取值: 為了完全描述隨機(jī)變量,只知道X的可能取值是很不夠的,還必須知道取各種值的概率,也就是說要知道下列一串概率的值: 記 ,將的可能取值及相應(yīng)的既率成下表
2024-09-07 11:53
【摘要】理科必做題 專題4離散型隨機(jī)變量的分布列、均值與方差【三年高考】1.【2017江蘇,理23】已知一個(gè)口袋中有個(gè)白球,個(gè)黑球(),這些球除顏色外全部相同.現(xiàn)將口袋中的球隨機(jī)地逐個(gè)取出,并放入如圖所示的編號(hào)為的抽屜內(nèi),其中第次取出的球放入編號(hào)為的抽屜.123(1)試求編號(hào)為2的抽屜內(nèi)放的是黑球的概率;(2)隨機(jī)變量表示最后一個(gè)取出的黑
2025-07-05 19:10
【摘要】1§離散型隨機(jī)變量§隨機(jī)變量的概念§超幾何分布·二項(xiàng)分布·泊松分布?2,1)()(???ixpxXPii1.“0-1”分布(兩點(diǎn)分布)3.二項(xiàng)分布),(~pnBX)(xPnx
2025-07-26 19:19