【摘要】求曲線的方程oyxoyx復習.答:一般地,在直角坐標系中,如果某曲線C上的點與一個二元方程F(x,y)=0的實數(shù)解建立了如下的關系:(1)曲線C上的點的坐標都是方程F(x,y)=0的解,(2)以方程F(x,y)=0的解為坐標的點都是曲線C上的點
2024-11-30 01:22
【摘要】求曲線的方程1教學目標知識與技能根據(jù)已知條件求平面曲線方程的基本步驟.過程與方法情感態(tài)度與價值觀教學重難點求曲線方程的步驟教學流程\內容\板書關鍵點撥加工潤色一、課題導
2024-12-02 00:30
【摘要】求曲線的方程2教學目標知識與技能1.更進一步熟練運用求曲線方程的方法、步驟,能熟練地根據(jù)條件求出簡單的曲線方程.過程與方法情感態(tài)度與價值觀教學重難點求曲線的方程或軌跡的常用方法:直接法、定義
【摘要】曲線與方程課題第1課時計劃上課日期:教學目標知識與技能(1)了解曲線上的點與方程的解之間的一一對應關系;(2)初步領會“曲線的方程”與“方程的曲線”的概念;[(3)學會根據(jù)已有的情景資料找規(guī)律,進而分析、判斷、歸納結論;(4)強化“形”與“數(shù)”一致并相互轉化的思
【摘要】雙曲線及其標準方程(二)【學習目標】進一步掌握雙曲線的定義,熟記雙曲線的標準方程.【自主學習】名稱橢圓雙曲線圖象xOyxOy定義平面內到兩定點21,FF的距離的和為常數(shù)(大于21FF
2024-12-05 01:00
【摘要】雙曲線及其標準方程(一)【學習目標】初步掌握雙曲線的定義,熟記雙曲線的標準方程.【自主學習】:手工操作演示雙曲線的形成:(按課本52頁的做法去做)分析:(1)軌跡上的點是怎么來的?(2)在這個運動過程中,什么是不變的?2.雙曲線的定義:平面內到兩定點21,FF的距離的為常數(shù)
2024-12-17 06:41
【摘要】課題曲線與方程(理科)學習目標:,了解曲線與方程的對應關系..、圓與方程理解曲線與方程的關系;利用數(shù)形結合,直觀體會曲線上點的坐標與方程解的關系.學習重點:.結合已知的曲線及其方程實例,了解曲線與方程的對應關系.學習難點:利用數(shù)形結合,直觀體會曲線上點的坐標與方程解的關系.學習方法:以講學稿為依托的探究式教
2024-11-30 18:59
【摘要】曲線與方程(1)【使用說明及學法指導】1.先自學課本,理解概念,完成導學提綱;2.小組合作,動手實踐?!緦W習目標】1.理解曲線的方程、方程的曲線;2.求曲線的方程.【重點】理解曲線的方程、方程的曲線【難點】求曲線的方程一、自主學習P34~P36,找出疑惑之處復習1:畫出函數(shù)22yx?
2024-11-30 16:53
【摘要】曲線與方程(2)【使用說明及學法指導】1.先自學課本,理解概念,完成導學提綱;2.小組合作,動手實踐?!緦W習目標】1.求曲線的方程的方法:待定系數(shù)法,直接法,代入法。2.通過曲線的方程,研究曲線的性質.【重點】求曲線的方程【難點】通過曲線的方程,研究曲線的性質一、自主學習P36~P37,找出
2024-12-10 00:11
【摘要】求曲線的方程.一:直接法.例1、△ABC的頂點A固定,點A的對邊BC的長是2a,邊BC上高的長是b,邊BC沿一定直線移動,求△ABC外心的軌跡方程。1、設A,B兩點的坐標分別是(-1,-1),(3,7).求線段AB的垂直平分線的方程練習40頁第2題求曲線的方程.
2024-11-29 15:21
【摘要】曲線和方程學習目標:1、了解平面直角坐標中“曲線的方程”和“方程的曲線”含義.2、會判定一個點是否在已知曲線上.一、知識回顧并引題:二、自學課本7573?P并記下重點,積極思考問題:三、自我檢測:1、到兩坐標軸距離相等的點組成的直線方程是0??yx嗎?2、已
2024-12-12 14:35
【摘要】2.雙曲線的簡單幾何性質(共2課時)一、教學目標1.了解雙曲線的簡單幾何性質,如范圍、對稱性、頂點、漸近線和離心率等。2.能用雙曲線的簡單幾何性質解決一些簡單問題。二、教學重點、難點重點:雙曲線的幾何性質及初步運用。難點:雙曲線的漸近線。三、教學過程(一)復習提問引入新課1.橢圓有哪些幾何性質,是
2024-12-20 08:44
【摘要】軌跡的“純粹性”與“完備性”“曲線的方程與方程的曲線”的定義包括兩個方面:一是曲線上點的坐標都是方程的解———稱為純粹性;二是以方程的解為坐標的點都在曲線上———稱為完備性.兩者缺一不可,否則就容易導致失誤.例1方程22(2)40xyxy?????的曲線是()A.兩個點B.一個圓
2024-12-02 00:26
【摘要】§雙曲線及其標準方程【使用說明及學法指導】1.先自學課本,理解概念,完成導學提綱;2.小組合作,動手實踐?!緦W習目標】1.從具體情境中抽象出雙曲線的模型2.理解雙曲線的定義;3.掌握雙曲線的標準方程.【重點】理解雙曲線的定義【難點】掌握雙曲線的標準方程一、自主學習(一)復
2024-12-10 23:00
【摘要】圓錐曲線綜合復習講義【基礎概念填空】橢圓1.橢圓的定義:平面內與兩定點F1,F(xiàn)2的距離的和__________________的點的軌跡叫做橢圓。這兩個定點叫做橢圓的_________,兩焦點之間的距離叫做橢圓的________.:橢圓)0ba(1byax2222????的中心在______,焦點在_____
2024-12-12 04:03