【摘要】2.4.1向量的數(shù)量積(2)【學(xué)習(xí)目標(biāo)】1、能夠理解和熟練運(yùn)用模長公式,兩點(diǎn)距離公式及夾角公式;2、理解并掌握兩個(gè)向量垂直的條件?!绢A(yù)習(xí)指導(dǎo)】1、若),(),,(2211yxbyxa??則??ba______________________________2、向量的模長公式:設(shè)
2024-12-02 01:05
【摘要】向量的數(shù)乘(1)【學(xué)習(xí)目標(biāo)】,會確定向量數(shù)乘后的方向和模;,并會用它進(jìn)行計(jì)算;,滲透類比思想和化歸思想【學(xué)習(xí)重難點(diǎn)】重點(diǎn):向量的數(shù)乘及運(yùn)算律;難點(diǎn):向量的數(shù)乘及運(yùn)算律;【自主學(xué)習(xí)】:一般地,實(shí)數(shù)?與向量a的積是一個(gè)向量,記作:_______;它的長度和方向規(guī)定如下:(1)|||
2024-12-01 12:31
【摘要】2.3.2向量的坐標(biāo)表示(1)【學(xué)習(xí)目標(biāo)】1、能正確的用坐標(biāo)來表示向量;2、能區(qū)分向量的坐標(biāo)與點(diǎn)的坐標(biāo)的不同;3、掌握平面向量的直角坐標(biāo)運(yùn)算;4、提高分析問題的能力。【預(yù)習(xí)指導(dǎo)】1、一般地,對于向量a,當(dāng)它的起點(diǎn)移至_______時(shí),其終點(diǎn)的坐標(biāo)),(yx稱為向量a的(直角)坐
2024-12-10 16:29
【摘要】2.4.1向量的數(shù)量積(1)【學(xué)習(xí)目標(biāo)】1.理解平面向量數(shù)量積的概念及其幾何意義2.掌握數(shù)量積的運(yùn)算法則3.了解平面向量數(shù)量積與投影的關(guān)系【預(yù)習(xí)指導(dǎo)】1.已知兩個(gè)非零向量a與b,它們的夾角為?,則把數(shù)量_________________叫做向量a與b的數(shù)量積(或內(nèi)積)。規(guī)定:零
2024-12-17 10:15
【摘要】函數(shù)sin()yAx????的圖像(2)【學(xué)習(xí)目標(biāo)】:1.能由正弦函數(shù)的圖象通過變換得到sin()yAx????的圖象;2.會根據(jù)函數(shù)圖象寫出解析式;3.能根據(jù)已知條件寫出sin()yAx????中的待定系數(shù)A,?,?.【重點(diǎn)難點(diǎn)】:根據(jù)函數(shù)圖象寫出解析式一、預(yù)習(xí)指導(dǎo)sin(
【摘要】空間向量的數(shù)量積【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.掌握空間向量夾角和模的概念及表示方法;2.掌握兩個(gè)向量的數(shù)量積的計(jì)算方法,并能利用兩個(gè)向量的數(shù)量積解決立體幾何中的一些簡單問題.3.掌握空間向量的正交分解及空間向量基本定理和坐標(biāo)表示;4.掌握空
2024-12-10 00:10
【摘要】弧度制【學(xué)習(xí)目標(biāo)】1.理解弧度制的意義,能正確地進(jìn)行弧度與角度的換算,熟記特殊角的弧度數(shù)2.掌握弧度制下的弧長公式和扇形的面積公式,會利用弧度制解決某些簡單的實(shí)際問題3.了解角的集合與實(shí)數(shù)集之間可以建立起一一對應(yīng)的關(guān)系【學(xué)習(xí)重點(diǎn)、難點(diǎn)】弧度的概念,弧度與角度換算【自主學(xué)習(xí)】一、復(fù)習(xí)引入請同學(xué)們回
2024-12-01 12:32
【摘要】§平面向量數(shù)量積的運(yùn)算律(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1.交換律:a?b=;2.?dāng)?shù)乘結(jié)合律:(?a)?b==;3.分配律:(a+b)?c=.說明
2024-12-09 23:43
【摘要】函數(shù)sin()yAx????的圖像(1)【學(xué)習(xí)目標(biāo)】:1、了解函數(shù)sin()yAx????的實(shí)際意義;2、弄清,,A??與函數(shù)sin()yAx????的圖像之間的關(guān)系;3、會用五點(diǎn)法畫函數(shù)sin()yAx????的圖像;【重點(diǎn)難點(diǎn)】:五點(diǎn)法畫函數(shù)sin()yAx????的圖像一、預(yù)
2024-12-10 16:30
【摘要】2.3.2向量數(shù)量積的運(yùn)算律一、學(xué)習(xí)要點(diǎn):向量數(shù)量積的運(yùn)算律及其簡單運(yùn)用二、學(xué)習(xí)過程:一.復(fù)習(xí)回顧:平面向量數(shù)量積的定義及其幾何意義、性質(zhì):二.新課學(xué)習(xí)::(1)(2)(3)
2024-11-30 16:44
【摘要】空間向量的數(shù)量積(二)【學(xué)習(xí)目標(biāo)】利用空間向量的數(shù)量積解決立體幾何中的一些簡單問題?!咀灾鲗W(xué)習(xí)與檢測】在正方體1111ABCDABCD?中,點(diǎn)M是AB的中點(diǎn),(1)求證;1ACDB?三、求1DB與CM所成角的余弦值。完成此題后,請你比較傳統(tǒng)證法與向量證法的優(yōu)劣。
2024-12-17 01:52
【摘要】空間向量的數(shù)量積(一)【學(xué)習(xí)目標(biāo)】;;。【自主學(xué)習(xí)】:::補(bǔ)充定義:零向量與任何向量的數(shù)量積為______________.:①___________________②__________________③___________________【自主檢測】
【摘要】2.3.1向量數(shù)量積的物理背景與定義一、學(xué)習(xí)要點(diǎn):向量數(shù)量積的定義、投影、數(shù)量積的性質(zhì)二、學(xué)習(xí)過程:一.復(fù)習(xí)回顧:數(shù)乘運(yùn)算的定義及運(yùn)算律:二.新課學(xué)習(xí)::如圖:一個(gè)物體在力F的作用下產(chǎn)生位移s,那么力F所做的功應(yīng)當(dāng)怎樣計(jì)算?W=|F|?|s|cos?其中力F和位移s是向量,?是F與s
【摘要】撰稿教師:李麗麗學(xué)習(xí)目標(biāo),會進(jìn)行平面向量數(shù)量積的坐標(biāo)運(yùn)算。。學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材112頁~114頁,找出疑惑之處)二、新課導(dǎo)學(xué)1.向量內(nèi)積的坐標(biāo)運(yùn)算已知兩個(gè)非零向量????1122a=x,y,b=x,y,ab=?(坐標(biāo)形式)。:
【摘要】1.2.1任意角的三角函數(shù)(2)【學(xué)習(xí)目標(biāo)】1、掌握任意角三角函數(shù)的定義,并能借助單位圓理解任意角三角函數(shù)的定義2、會用三角函數(shù)線表示任意角三角函數(shù)的值3、掌握正弦、余弦、正切函數(shù)的定義域和這三種函數(shù)的值在各象限的符號【學(xué)習(xí)重點(diǎn)、難點(diǎn)】會用三角函數(shù)線表示任意角三角函數(shù)的值【自主學(xué)習(xí)】一、復(fù)習(xí)回顧1.單位圓的